精英家教网 > 高中数学 > 题目详情

若a、b为实数,则下面一定成立的是


  1. A.
    若a>b,则a2>b2
  2. B.
    若|a|>b,则a2>b2
  3. C.
    若a>|b|,则a22
  4. D.
    若a≠|b|,则a2≠b2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,F(x)=
f(x) (x>0)
-f(x) (x<0)
,当x∈[-2,2]且x≠0时,求F(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)设集合s为非空实数集,若数η(ξ)满足:
(1)对?x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)对?a<η(a>ξ),?xo∈S,使得xo>a(xo<a),即η(ξ)是S的最小(最大)上界(下界),则称数η(ξ)为数集S的上(下)确界,记作η=supS(ξ=infS).
给出如下命题:
①若 S={x|x2<2},则 supS=-
2

②若S={x|x=n|,x∈N},则infS=l;
③若A、B皆为非空有界数集,定义数集A+B={z|z=x+y,x∈A,y∈B},则sup(A+B)=supA+supB.
其中正确的命题的序号为
(填上所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,数学公式,当x∈[-2,2]且x≠0时,求F(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,F(x)=
f(x) (x>0)
-f(x) (x<0)
,当x∈[-2,2]且x≠0时,求F(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京市人大附中高一(上)模块数学试卷(必修1)(解析版) 题型:解答题

设函数f(x)=ax2+bx+1(a,b为实数),
(1)若f(-1)=0且对任意实数x均有f(x)≥0成立,求f(x)表达式;
(2)在(1)的条件下,若g(x)=f(x)-kx,在区间[-2,2]上是单调函数,则实数k的取值范围;
(3)在(1)的条件下,,当x∈[-2,2]且x≠0时,求F(x)的值域.

查看答案和解析>>

同步练习册答案