精英家教网 > 高中数学 > 题目详情
(2012•东至县模拟)已知a,b都是正实数,且a+b=2,求证:
a2
a+1
+
b2
b+1
≥1
分析:所以原不等式等价于 a2+b2+ab(a+b)≥ab+a+b+1,将a+b=2代入,只需要证明ab≤1.再利用基本不等式可得
a2
a+1
+
a+1
4
≥a,
b2
b+1
+
b+1
4
≥b,相加即可证得不等式成立.
解答:证明:因为a,b都是正实数,所以原不等式等价于a2(b+1)+b2(a+1)≥(a+1)(b+1),
即 a2b+a2+ab2+b2≥ab+a+b+1.
 等价于 a2+b2+ab(a+b)≥ab+a+b+1,…(6分)
将a+b=2代入,只需要证明 a2+b2+ab=(a+b)2=4≥ab+3,即ab≤1.
而由已知 a+b=2≥2
ab
,可得ab≤1成立,所以原不等式成立.    …(12分)
另证:因为a,b都是正实数,所以
a2
a+1
+
a+1
4
≥a,
b2
b+1
+
b+1
4
≥b.   …(6分)
两式相加得 
a2
a+1
+
a+1
4
+
b2
b+1
+
b+1
4
≥a+b,…(8分)
因为  a+b=2,所以
a2
a+1
+
b2
b+1
≥1
.   …(12分)
点评:本题主要考查基本不等式的应用,用分析法和综合法证明不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知命题p:|x-1|+|x+1|≥3a恒成立,命题q:y=(2a-1)x为减函数,若p且q为真命题,则a的取值范围是
1
2
2
3
]
1
2
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)cso15°cos30°+cos105°sin30°的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)已知函数f(x)=2cos(ωx+φ)(ω>0)的图象关于直线x=
π
12
对称,f(
π
3
)=0,则ω的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)若a>0,b>0且a+b=2,则下列不等式恒成立的是(  )

查看答案和解析>>

同步练习册答案