精英家教网 > 高中数学 > 题目详情
7.若已知x,y满足x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的取值范围;
(2)x2+y2的取值范围.

分析 (1)整理方程可知,方程表示以点(2,0)为圆心,以$\sqrt{3}$为半径的圆,设$\frac{y}{x}$=k,进而根据圆心(2,0)到y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值,确定出k的范围,即为所求$\frac{y}{x}$的范围.
(2)x2+y2表示(x,y)与(0,0)的距离的平方,即可求出x2+y2的取值范围.

解答 解:(1)设$\frac{y}{x}$=k,即kx-y=0,
由圆方程x2+y2-4x+1=0
∴(x-2)2+y2=3得到圆心坐标为(2,0),半径r=$\sqrt{3}$,
当直线与圆相切时,圆心到切线的距离d=r,即$\frac{|2k|}{\sqrt{{k}^{2}+1}}$=$\sqrt{3}$,
解得:k=±$\sqrt{3}$,
则$\frac{y}{x}$的取值范围是[-$\sqrt{3}$,$\sqrt{3}$].
(2)x2+y2表示(x,y)与(0,0)的距离的平方,
圆心到原点的距离为2,半径r=$\sqrt{3}$,∴x2+y2的取值范围[(2-$\sqrt{3}$)2,(2+$\sqrt{3}$)2],即[7-4$\sqrt{3}$,7+4$\sqrt{3}$].

点评 本题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,直线与圆相切时满足的条件,利用了转化的思想,求出直线与圆相切时斜率的值是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+ax+3,当x∈[-2,2]时,f(x)的最小值为a2-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax+lnx,x∈[1,+∞)
(1)若f′(x0)=$\frac{f(e)-f(1)}{e-1}$,求x0的值;
(2)若函数f(x)在[1,+∞)上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.第11届全国人大五次会议于2012年3月5日至3月14日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(I)根据以上数据完成以下2X2列联表:
会俄语不会俄语总计
10616
6814
总计161430
并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635
(II)若从14名女记者中随机抽取2人担任翻译工作,记会俄语的人数为ξ,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a1=3,an+1=an2-2,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sin(x+$\frac{π}{4}$)=$\frac{1}{3}$,则cos(x+$\frac{3π}{4}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:log${\;}_{\root{3}{3}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在命题:①y=2${\;}^{\frac{1}{x-1}}$的值域是(0,+∞);②y=$\sqrt{1-{x}^{2}}$的值域是[0,1];③y=x+$\sqrt{x+3}$的值域[-3,+∞);④y=x+$\sqrt{1-{x}^{2}}$的值域是[-$\sqrt{2}$,$\sqrt{2}$]中,错误命题的个数有(  )
A.1B.3C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线为y=-12x.
(1)求f(x)的解析式;
(2)求f(x)在[-3,1]上的极值.

查看答案和解析>>

同步练习册答案