精英家教网 > 高中数学 > 题目详情
(2010•武昌区模拟)已知函数f(x)=x3+bx2+cx,x∈R的图象与x轴相切于非原点的一点,且函数的极小值为-4.
(1)求b,c的值;
(2)对a<0,记F(a)为f(x)在[a,0]上的最小值,若F(a)≤λa恒成立,试求实数λ的取值范围;
(3)求证:当-1<x<0时,f(x)<4sinx.
分析:(1)根据f(x)=x3+bx2+cx的图象与x轴相切于非原点的一点,可以判断c≠0.且当x小于0时有一个极值为0,结合图象可得方程x2+bx+c=0有且仅有一个根,且在这个根处导数等于0,据此可求出b,c的值.
(2)先求函数的导数,令导数等于0,求出极值点,再按a的取值讨论求出函数在[a,0]上的最小值,代入F(a)≤λa,求λ的取值范围.
(3)由(2)知,当-1<x<0,f(x)<4x恒成立,所以可用放缩法,证明4x<4sinx即可,再转换为判断函数y=4x-4sinx与0的大小比较,借助导数求出.
解答:解:(1)依题意,函数f(x)的图象如图所示,
f'(x)=3x2+2bx+c∵原点不是切点,∴c≠0.
记切点横坐标为x0(x0<0)
又f(x)=x3+bx2+cx=x(x2+bx+c)
则方程x2+bx+c=0有且仅有一个根x=x0∴△=b2-4c=0,即c=
b2
4
.①
f′(x)=3x2+2bx+c=3x2+2bx+
b2
4
=
(6x+b)(2x+b)
4

x1=-
b
6
x2=-
b
2
(b>0)
f(-
b
6
)=-4
,即5b2-36bc+432=0.②
由①②,解得b=6,c=9
(2)f(x)=x3+6x2+9x,由f(x)=-4得x=-4或-1.∴当a<-4时,f(x)在[a,0]上的最小值F(a)=f(a)=a3+6a2+9a
当-4≤a≤1时,f(x)在[a,0]上的最小值F(a)=f(-1)=-4
当1<a<0时,f(x)在[a,0]上的最小值F(a)=f(a)=a3+6a2+9a
要使F(a)≤λa恒成立,只需λ≤
F(a)
a
恒成立,∴当a<-4时,
F(a)
a
=a2+6a+9=(a+3)2>1
,则λ≤1
当1<a<0时,
F(a)
a
=a2+6a+9=(a+3)2>4
则λ≤4
当-4≤a≤-1时,
F(a)
a
=
-4
a
≥1
,则λ≤1
综上所述,λ≤1
(3)由(2)知,当-1<x<0,f(x)<4x恒成立
(或利用f(x)-4x=x3+6x2+5x=x(x+1)(x+5)<0在-1<x<0,恒成立)
记g(x)=x-sinx(-1<x<0),
则g'(x)=1-cosx>0.∴g(x)在(-1,0)上单调递增,g(x)<g(0)=0.
∴x<sinx在-1<x<0恒成立,∴-1<x<0时,在f(x)≤4x<4sinx,得证
点评:本题主要考查了导数与函数的极值,最值,以及单调性的判断之间的关系,属于导数的应用题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•武昌区模拟)球面上有3个点,其中任意两点的球面距离都等于大圆周长的
1
6
,经过这3点的小圆周长为4π,那么这个球的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)一个口袋中装有4个红球和5个白球,一次摸奖从中摸两个球,两个球颜色不同则中奖.
(Ⅰ)试求一次摸奖中奖的概率P;
(Ⅱ)求三次摸奖(每次摸奖后放回)中奖次数ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)设函数f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然对数的底数.
(1)求p与q的关系;
(2)若f(x)在其定义域内为单调函数,求p的取值范围.
(3)设g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)
lim
x→0
=
ex-1
x
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武昌区模拟)2010年两会记者招待会上,主持人要从5名中国记者与4名外主国记者中选出3名进行提问,要求3人中既有国内记者又有国外记者,且国内记者不能连续提问,则不同的提问方式的种数是(  )

查看答案和解析>>

同步练习册答案