【题目】已知函数f(x)=|x|+|x﹣4|,则不等式f(x2+2)>f(x)的解集用区间表示为 .
【答案】
【解析】解:令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|, x≥4时,g(x)=2x2﹣2x+4>0,解得:x≥4;
≤x<4时,g(x)=2x2﹣4>0,解得:x> 或x<﹣ ,
故 <x<4;
0≤x< 时,g(x)=0>0,不合题意;
﹣ ≤x<0时,g(x)=2x>0,不合题意;
x<﹣ 时,g(x)=2x2+2x﹣4>0,解得:x>1或x<﹣2,
故x<﹣2,
所以答案是: .
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y(单位:毫克/立方米)随着时间x(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.
(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?
(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒 个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ( ),若函数F(x)=f(x)﹣3的所有零点依次记为x1 , x2 , x3 , …,xn , 且x1<x2<x3<…<xn , 则x1+2x2+2x3+…+2xn﹣1+xn= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,甲、乙两个企业的用电负荷量关于投产持续时间(单位:小时)的关系均近似地满足函数.
(1)根据图象,求函数的解析式;
(2)为使任意时刻两企业用电负荷量之和不超过,现采用错峰用电的方式,让企业乙比企业甲推迟小时投产,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.
(1)求样本容量及各组对应的频率;
(2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣x﹣lnx,a∈R.
(1)当 时,求函数f(x)的最小值;
(2)若﹣1≤a≤0,证明:函数f(x)有且只有一个零点;
(3)若函数f(x)有两个零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.
(1)若命题为真命题,求实数的值;
(2)若“且”为假命题,“或”为真命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com