精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的离心率,过点的直线与原点的距离为是椭圆上任一点,从原点向圆作两条切线,分别交椭圆于点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若记直线的斜率分别为,试求的值.

【答案】(1)(2)见解析

【解析】试题分析】(1)依据题设条件及基本量之间的关系建立建立方程组求解;(2)运用直线与圆的位置关系联立方程组,借助坐标之间的关系分析探求

(Ⅰ)因为离心率,所以,而

所以,即

设过点的直线方程为

因为直线与原点的距离为

所以,整理得:

由①②得

所以椭圆的方程为.

(Ⅱ)因为直线,与圆相切,由直线和圆相切的条件:,可得

平方整理,可得

所以是方程的两个不相等的实数根,,因为点在椭圆上,所以,即,所以为定值;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前n项和为满足,公比大于1的等比数列满足 .

1求证数列是等差数列,并求其通项公式

2求数列的前n项和

3)在(2)的条件下,若对一切正整数n恒成立求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.

(1)求证:

(2)若的中点,求异面直线所成角的余弦值;

(3)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率,左、右焦点分别为 ,点满足: 在线段的中垂线上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若斜率为)的直线轴、椭圆顺次相交于点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列为等比数列,等差数列的前项和为,且满足:

.

(1)求数列的通项公式;

(2)设,求

(3)设,问是否存在正整数,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若在区间上具有相同的单调性,求实数的取值范围;

(2)若,且函数的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足

1)求证:数列为等比数列;

2)若,求的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(90分及以上为认知程度高),现从参赛者中抽取了人,按年龄分成5组(第一组:,第二组,第三组:,第四组:,第五组:),得到如图所示的频率分布直方图,已知第一组有6人

(1)求

(2)求抽取的人的年龄的中位数(结果保留整数);

(3)从该市大学生、军人、医务人员、工人、个体户五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1-5组,从这5个按年龄分的组合5个按职业分的组中每组各选派1人参加知识竞赛代表相应组的成绩,年龄组中1-5组的成绩分别为93,96,97,94,90,职业组中1-5组的成绩分别为93,98,94,95,90

i)分别求5个年龄组和5个职业组成绩的平均数和方差;

ii)以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右焦点是抛物线的焦点,在第一象限内的交点,且.

(1)求的方程;

(2)已知菱形的顶点在椭圆上,顶点在直线上,求直线的方程.

查看答案和解析>>

同步练习册答案