精英家教网 > 高中数学 > 题目详情
已知等比数列{an}中,a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}中,b2=a2,b9=a5,求数列{bn}的前n项和Sn
分析:(1)由等比数列{an}中,a1=2,a4=16可求出q=2,再根据a1和q的值就可求出数列{an}的通项公式.
(2)先等差数列{bn}中,b2=a2,b9=a5,求出b1和d,再代入等差数列前n项和公式即可.
解答:解:(1)设数列{an}的公比为q,依题意,a4=a1×q3,即16=2×q3
∴an=a1qn-1=2•2n-1=2n
(2)设等差数列{bn}的公差为d,依题意,b2=a2=4,b9=a5=32∴32=4+(9-2)d,
∴d=4
∴b1=4-4=0
Sn=b1n+
n(n-1)
2
d=2n2-2n
点评:本题考查了等比数列通项公式的求法,以及等差数列前n项和公式的求法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案