精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 是奇函数,且f(2)=
(1)求实数m和n的值;
(2)判断函数f(x)在(﹣∞,0)上的单调性,并加以证明.

【答案】
(1)解:∵f(x)是奇函数,∴f(﹣x)=﹣f(x),

=﹣ =

比较得n=﹣n,n=0.

又f(2)= ,∴ = ,解得m=2.

即实数m和n的值分别是2和0


(2)解:函数f(x)在(﹣∞,﹣1]上为增函数,在(﹣1,0)上为减函数.

证明如下:由(1)可知f(x)= = +

设x1<x2<0,

则f(x1)﹣f(x2)= (x1﹣x2

= (x1﹣x2

当x1<x2≤﹣1时,x1﹣x2<0,x1x2>0,x1x2﹣1>0,

∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),

∴函数f(x)在(﹣∞,﹣1]上为增函数;

当﹣1<x1<x2<0时,

x1﹣x2<0,x1x2>0,x1x2﹣1<0,

∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),

∴函数f(x)在(﹣1,0)上为减函数


【解析】(1)利用函数是奇函数的定义,列出方程,比较求解n,利用f(2)= ,求解m即可.(2)利用函数的单调性的定义判断求解即可.
【考点精析】掌握奇偶性与单调性的综合是解答本题的根本,需要知道奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c(a≠0),记f[2](x)=f(f(x)),例:f(x)=x2+1,
则f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2﹣x,解关于x的方程f[2](x)=x;
(2)记△=(b﹣1)2﹣4ac,若f[2](x)=x有四个不相等的实数根,求△的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a=log36,a=log510,a=log714,则(
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数图象上的点,是双曲线在第四象限这一分支上的动点,过点作直线,使其与双曲线只有一个公共点,且与轴、轴分别交于点,另一条直线轴、轴分别交于点

则(1)为坐标原点,三角形的面积为__________

(2)四边形面积的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,设椭圆的焦点为,过右焦点的直线与椭圆相交于两点,若的周长为短轴长的倍.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设的斜率为,在椭圆上是否存在一点,使得?若存在,求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x , x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+ (a<1)的定义域为B.
(1)求集合A,B;
(2)若BA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)曲线轴于两点,且点 为直线上的动点,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),

(Ⅰ) 试求曲线在点处的切线l与曲线的公共点个数;(Ⅱ) 若函数有两个极值点,求实数a的取值范围.

(附:当x趋近于0时, 趋向于

查看答案和解析>>

同步练习册答案