精英家教网 > 高中数学 > 题目详情

【题目】设函数,其中为正实数.

1)若的图象总在函数的图象的下方,求实数的取值范围;

2)设,证明:对任意,都有.

【答案】1 2)证明见解析

【解析】

(1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有.

1)解:因为函数的图象恒在的图象的下方,

所以在区间上恒成立.

,其中

所以,其中.

①当,即时,

所以函数上单调递增,

成立,满足题意.

②当,即时,设

图象的对称轴

所以上存在唯一实根,设为,则

所以上单调递减,此时,不合题意.

综上可得,实数的取值范围是.

2)证明:由题意得

因为当时,

所以.

,则

所以上单调递增,,即

所以,从而.

由(1)知当时,上恒成立,整理得.

,则要证,只需证.

因为,所以上单调递增,

所以,即上恒成立.

综上可得,对任意,都有成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.(其中为自然对数的底数)

(1)若恒成立,求的最大值;

(2)设,若存在唯一的零点,且对满足条件的不等式恒成立,求实数的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的单调区间;

(2)当时,求证:对于恒成立;

(3)若存在,使得当时,恒有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,椭圆的离心率为,过椭圆的左焦点,且斜率为的直线,与以右焦点为圆心,半径为的圆相切.

1)求椭圆的标准方程;

2)线段是椭圆过右焦点的弦,且,求的面积的最大值以及取最大值时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABCD⊥平面CDEF,且四边形ABCD是梯形,四边形CDEF是矩形, ,M是线段DE上的点,满足DM=2ME.

(1)证明:BE//平面MAC;

(2)求直线BF与平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥EABCD的侧棱DE与四棱锥FABCD的侧棱BF都与底面ABCD垂直,//.

1)证明://平面BCE.

2)设平面ABF与平面CDF所成的二面角为θ,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为(其中为常数).

1)若曲线N与曲线M只有一个公共点,求的取值范围;

2)当时,求曲线M上的点与曲线N上的点之间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

1)讨论函数的单调性;

2)当时,试证明:函数有且仅有两个零点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,为等腰直角三角形,,设点中点,点中点,点上一点,且

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案