精英家教网 > 高中数学 > 题目详情

已知函数f(x)=cos2x-2sinxcosx-sin2x.
(1)在给定的坐标系(如图)中,作出函数f(x)在区间[o,π]上的图象;
(2)求函数f(x)在区间[-数学公式,0]上的最大值和最小值.

解:(1)f(x)=cos2x-sin2x=cos(2x+),
因为x∈[0,π],所以2x+∈[]
2x+π
x0π
f(x)10-01

(2)因为x∈[-,0],所以2x+∈[-],当2x+=- 时f(x)取最小值-1,当2x+=0时f(x)取
最大值
分析:(1)化简函数的解析式为 f(x)=cos2x-sin2x=cos(2x+),用五点法做出图象.
(2)根据x的范围,可得2x+的范围,根据余弦函数的单调性求得当2x+=- 时,f(x)取最小值-1,
当2x+=0时f(x)取最大值
点评:本题考查三角函数的恒等变换,用五点法作余弦函数的图象,余弦函数的定义域和值域,作图是解题的难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
|x+
1
x
|,x≠0
0     x=0
,则关于x的方程f2(x)+bf(x)+c=0有5个不同实数解的充要条件是(  )
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函数f(x)的最小值和最小正周期;
(2)已知△ABC内角A、B、C的对边分别为a、b、c,满足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象如图所示,则函数的值域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+c(a,b,c∈R)满足f(0)≥2,f(1)≥2,方程f(x)=0在区间(0,1)上有两个实数根,则实数a的取值范围为
(4,+∞)
(4,+∞)

查看答案和解析>>

同步练习册答案