【题目】已知平面向量,,满足:,的夹角为,||=5,,的夹角为,||=3,则的最大值为_____.
【答案】36
【解析】
设,,,由题意知四点共圆,建立坐标系,求出点的坐标和圆的半径,设,用表示,根据范围和三角和差公式,即可求解.
设,,,
则AB=||=5,AC=||=3,∠ACB,∠APB,
可得P,A,B,C四点共圆.
设△ABC的外接圆的圆心为O,则∠AOB=2∠APB,
由正弦定理可知:2OA5,故OA.
以O为圆心,以OA,OB为坐标轴建立平面坐标系如图所示:
则A(,0),B(0,).
在△OAC中,由余弦定理可得cos∠AOC,
故sin∠AOC,∴C(,).
设P(cosα,sinα),,
则(cosα,sinα),(cosα,sinα),
∴(cosα)(cosα)sinα(sinα)
=16+12sinα﹣16cosα=16+20(sinαcosα)
=16+20sin(α﹣φ),其中sinφ,cosφ.
∴当α=φ时,取得最大值36.
答案:36.
科目:高中数学 来源: 题型:
【题目】已知抛物线Γ的准线方程为.焦点为.
(1)求证:抛物线Γ上任意一点的坐标都满足方程:
(2)请求出抛物线Γ的对称性和范围,并运用以上方程证明你的结论;
(3)设垂直于轴的直线与抛物线交于两点,求线段的中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报元;
方案二:第一天回报元,以后每天比前一天多回报元;
方案三:第一天回报元,以后每天的回报比前一天翻一番.
记三种方案第天的回报分别为,,.
(1)根据数列的定义判断数列,,的类型,并据此写出三个数列的通项公式;
(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln(ax+b)﹣x(a,b∈R,ab≠0).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,求ea(b﹣1)的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com