精英家教网 > 高中数学 > 题目详情

已知的导函数,,且函数的图象过点
(1)求函数的表达式;
(2)求函数的单调区间和极值.

(1);(2)函数的单调减区间为,单调增区间为 极小值是,无极大值.

解析试题分析:⑴注意到是常数,所以从而可求得;又因为函数的图象过点,所以点的坐标满足函数解析式,从而可求出m的值,进而求得的解析式.(2)由⑴可得的解析式及其定义域,进而就可应用导数求其单调区间和极值.
试题解析:⑴,   ,   
函数的图象过点,解得:          
函数的表达式为:      
(2)函数的定义域为
 
时,;当时,               
函数的单调减区间为,单调增区间为 
极小值是,无极大值.
考点:1.函数的导数;2.函数的单调区间;3.函数的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=﹣x3+x2+3x+a.
(1)求f(x)的单调区间;
(2)若f(x)在区间[﹣3,3]上的最小值为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数.
⑴当时,函数的图象与函数的图象有公共点,求实数的最大值;
⑵当时,试判断函数的图象与函数的图象的公共点的个数;
⑶函数的图象能否恒在函数的上方?若能,求出的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax2+bln x在x=1处有极值.
(1)求a,b的值;
(2)判断函数y=f(x)的单调性并求出单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立关于的函数关系式;
(2)当为多少平方米时,取得最小值?最小值是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用白铁皮做一个平底、圆锥形盖的圆柱形粮囤,粮囤容积为(不含锥形盖内空间),盖子的母线与底面圆半径的夹角为,设粮囤的底面圆半径为R,需用白铁皮的面积记为(不计接头等)。
(1)将表示为R的函数;
(2)求的最小值及对应的粮囤的总高度。(含圆锥顶盖)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若对任意x1∈[0,1],存在x2∈[1,2],使,求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
⑴ 若函数的图象在点处的切线的倾斜角为,求上的最小值;
⑵ 若存在,使,求的取值范围.

查看答案和解析>>

同步练习册答案