分析 利用角$\frac{π}{3}$与α为终边相同的角可得,α=2kπ+$\frac{π}{3}$,k∈z,从而可得与$\frac{α}{3}$终边相同的角,继而可得答案.
解答 解:依题意,α=2kπ+$\frac{π}{3}$,k∈z,
∴$\frac{α}{3}$=$\frac{2kπ}{3}+\frac{π}{9}$,k∈z,
又$\frac{α}{3}$∈[0,2π],
∴k=0,$\frac{α}{3}$=$\frac{π}{9}$;
k=1,$\frac{α}{3}=\frac{7π}{9}$;
k=2,$\frac{α}{3}=\frac{13π}{9}$.
故答案为:$\frac{π}{9}$,$\frac{7π}{9}$,$\frac{13π}{9}$.
点评 本题考查终边相同的角,表示出与终边相同的角是关键,考查分析与转化及运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {a|a=kπ+$\frac{π}{2}$,k∈Z} | B. | {a|a=kπ,k∈Z} | ||
C. | {a|a=2kπ+$\frac{π}{2}$,k∈Z} | D. | {a|a=kπ或a=kπ+$\frac{π}{2}$,k∈Z} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com