精英家教网 > 高中数学 > 题目详情

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时,都有,则称为“偏对称函数”.现给出四个函数:.则其中是“偏对称函数”的函数个数为(

A.3B.2C.1D.0

【答案】D

【解析】

条件②等价于在(0)上单调递减,在(0,+)上单调递增,条件③等价于在(0)上恒成立,依次判断各函数是否满足条件即可得出结论.

解:由②可知当x0时,,当x0时,
在(0)上单调递减,在(0,+)上单调递增;
由③可知当时,,即在(0)上恒成立;

在(-1)上单调递减,在(-1,+)上单调递增,故不满足条件②,
不是偏对称函数

是奇函数,在R上单调递增,不满足条件②,
不是偏对称函数

时,
,则
在(0)上单调递减,故,不满足条件

不为偏对称函数

,令,得

在()上单调递减,在(,+)上单调递增,故不满足条件
不为偏对称函数”.
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设二次函数),关于的不等式的解集中有且只有一个元素.

1)设数列的前项和),求数列的通项公式;

2)设),则数列中是否存在不同的三项能组成等比数列?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直线将矩形纸分为两个直角梯形,将梯形沿边翻折,如图2,在翻折的过程中(平面和平面不重合),下面说法正确的是

图1 图2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的过程中,平面恒成立

D.在翻折的过程中,平面恒成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AEBF所成角的余弦值为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求证:

(2)若,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数为( )

A.84B.56C.35D.28

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

1)求抛物线的方程;

2)求过点且与抛物线的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )

A. 甲型号手机在外观方面比较好.B. 甲、乙两型号的系统评分相同.

C. 甲型号手机在性能方面比较好.D. 乙型号手机在拍照方面比较好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

同步练习册答案