分析 (1)由f(x)是定义域为R的奇函数,从而可以得到$\left\{\begin{array}{l}{f(0)=0}\\{f(-1)=-f(1)}\end{array}\right.$,带入解析式便可得到$\left\{\begin{array}{l}{\frac{-1+b}{2+a}=0}\\{\frac{-\frac{1}{2}+b}{1+a}=-\frac{-2+b}{4+a}}\end{array}\right.$,这样便可解出a=2,b=1,从而便可得出f(x)的解析式;
(2)先分离常数得到$f(x)=-\frac{1}{2}+\frac{1}{{2}^{x}+1}$,可根据单调性的定义判断该函数的单调性:设任意的x1,x2∈R,且x1<x2,然后作差,通分,从而判断出f(x1)与f(x2)的大小关系,便可得出f(x)的增减性.
解答 解:(1)f(x)是定义在R上的奇函数;
∴f(0)=0,且f(-1)=-f(1);
∴$\left\{\begin{array}{l}{\frac{-1+b}{2+a}=0}\\{\frac{-\frac{1}{2}+b}{1+a}=-\frac{-2+b}{4+a}}\end{array}\right.$;
解得b=1,a=2;
∴$f(x)=\frac{1-{2}^{x}}{{2}^{x+1}+2}$;
(2)$f(x)=\frac{1-{2}^{x}}{{2}^{x+1}+2}=\frac{-({2}^{x}+1)+2}{2({2}^{x}+1)}$=$-\frac{1}{2}+\frac{1}{{2}^{x}+1}$;
设x1,x2∈R,且x1<x2,则:
$f({x}_{1})-f({x}_{2})=\frac{1}{{2}^{{x}_{1}}+1}-\frac{1}{{2}^{{x}_{2}}+1}$=$\frac{{2}^{{x}_{2}}-{2}^{{x}_{1}}}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$;
∵x1<x2;
∴${2}^{{x}_{1}}<{2}^{{x}_{2}}$;
∴${2}^{{x}_{2}}-{2}^{{x}_{1}}>0$;
又${2}^{{x}_{1}}+1>0,{2}^{{x}_{2}}+1>0$;
∴f(x1)>f(x2);
∴f(x)在R上单调递减.
点评 考查奇函数的定义,奇函数f(x)在原点有定义时有f(0)=0,分离常数法的运用,以及函数单调性的定义,根据函数单调性定义判断一个函数单调性的方法和过程,作差的方法比较f(x1)与f(x2),作差后是分式的一般要通分.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com