【题目】一种新的验血技术可以提高血液检测效率.现某专业检测机构提取了份血液样本,其中只有1份呈阳性,并设计了如下混合检测方案:先随机对其中份血液样本分别取样,然后再混合在一起进行检测,若检测结果为阴性,则对另外3份血液逐一检测,直到确定呈阳性的血液为止;若检测结果呈阳性,测对这份血液再逐一检测,直到确定呈阳性的血液为止.
(1)若,求恰好经过3次检测而确定呈阳性的血液的事件概率;
(2)若,宜采用以上方案检测而确定呈阳性的血液所需次数为,
①求的概率分布;
②求.
科目:高中数学 来源: 题型:
【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:
20以下 | 70以上 | ||||||
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;
(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;
(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点在双曲线上,双曲线的左、右焦点分别为、,下列结论正确的是( )
A.的离心率为
B.的渐近线方程为
C.动点到两条渐近线的距离之积为定值
D.当动点在双曲线的左支上时,的最大值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中,为自然对数的底数.
(1)若,求函数在处的切线方程;
(2)若函数在定义域上恰有两个不同的零点,求实数a的取值范围;
(3)设函数在区间)上存在极值,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F是抛物线C:x2=4y的焦点,过E(0,﹣1)的直线l与抛物线分別交于A,B两点.
(1)设直线AF,BF的斜率分別为k1,k2,证明:k1+k2=0;
(2)若的面积为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春节突如其来的新型冠状病毒肺炎在湖北爆发,一方有难八方支援,全国各地的白衣天使走上战场的第一线,某医院抽调甲、乙两名医生,抽调、、三名护士支援武汉第一医院与第二医院,参加武汉疫情狙击战其中选一名护士与一名医生去第一医院,其它都在第二医院工作,则医生甲和护士被选在第一医院工作的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)直线与轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com