精英家教网 > 高中数学 > 题目详情

【题目】某企业参加项目生产的工人为人,平均每人每年创造利润万元.根据现实的需要,从项目中调出人参与项目的售后服务工作,每人每年可以创造利润万元(),项目余下的工人每人每年创造利图需要提高

1)若要保证项目余下的工人创造的年总利润不低于原来名工人创造的年总利润,则最多调出多少人参加项目从事售后服务工作?

2)在(1)的条件下,当从项目调出的人数不能超过总人数的时,才能使得项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数的取值范围.

【答案】1;(2.

【解析】

1)根据题意,列出不等式,求解即可;

2)求出的范围,得出不等式,整理可得恒成立,根据的范围,可知函数在定义域内为减函数,当时,函数取得最小值.

设调出人参加项目从事售后服务工作

1)由题意得:

,又,所以.即最多调整500名员工从事第三产业.

2)由题知,

从事第三产业的员工创造的年总利润为万元,

从事原来产业的员工的年总利润为万元,

所以

所以

恒成立,

因为

所以

所以

,所以

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是递增数列,数列满足:对任意,存在,使得,则称的“分隔数列”.

(1)设,证明:数列的分隔数列;

(2)设的前n项和,,判断数列是否是数列的分隔数列,并说明理由;

(3)设的前n项和,若数列的分隔数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,左顶点为,经过点,过点作斜率为的直线交椭圆于点,交轴于点.

1)求椭圆的方程;

2)已知的中点,,证明:对于任意的都有恒成立;

3)若过点作直线的平行线交椭圆于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两动圆),把它们的公共点的轨迹记为曲线,若曲线轴的正半轴的交点为,且曲线上的相异两点满足:.

1)求曲线的轨迹方程;

2)证明直线恒经过一定点,并求此定点的坐标;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计学中将个数的和记作

1)设,求

2)是否存在互不相等的非负整数,使得成立,若存在,请写出推理的过程;若不存在请证明;

3)设是不同的正实数,,对任意的,都有,判断是否为一个等比数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线G的顶点在原点,焦点在y轴正半轴上,点Pm,4)到其准线的距离等于5.

(1)求抛物线G的方程;

(2)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y﹣1)2=1交于ACDB四点,试证明|AC||BD|为定值;

(3)过AB分别作抛物G的切线l1l2l1l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据,,是上海普通职()个人的年收入,设这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确(

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数大大增大,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点,且渐近线方程为,直线与曲线交于点两点.

(1)求双曲线的方程;

(2)若直线过原点,点是曲线上任一点,直线的斜率都存在,记为,试探究的值是否与点及直线有关,并证明你的结论;

(3)若直线过点,问在轴上是否存在定点,使得为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案