A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{3\sqrt{2}}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{3}{4}$ |
分析 建立如图所示直角坐标系,求出λ=$\frac{\sqrt{2}}{4}$,μ=$\frac{\sqrt{2}}{2}$,即可得出结论.
解答 解:建立如图所示直角坐标系,则A(0,0),
B(2,0),C(1,1),D(0,1),E(1,0),
F($\frac{3}{2}$,$\frac{1}{2}$),
所以$\overrightarrow{ED}$=(-1,1),$\overrightarrow{AF}$=($\frac{3}{2}$,$\frac{1}{2}$),
若$\overrightarrow{AP}=λ\overrightarrow{ED}+μ\overrightarrow{AF}$=(-λ+$\frac{3}{2}$μ,λ+$\frac{1}{2}μ$),
又因为以A 为圆心,AD为半径的圆弧DE中点为P,所以点P的坐标为P($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{AP}$=($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)
所以-λ+$\frac{3}{2}$μ=$\frac{\sqrt{2}}{2}$,λ+$\frac{1}{2}μ$=$\frac{\sqrt{2}}{2}$,所以λ=$\frac{\sqrt{2}}{4}$,μ=$\frac{\sqrt{2}}{2}$,
所以λ+μ=$\frac{3\sqrt{2}}{4}$
故选B.
点评 本题考查向量知识的运用,考查坐标系,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 2 或8 | B. | 2 | C. | 8 | D. | 21 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ${a_n}=\frac{{n({n-1})}}{2}$ | B. | an=n(n-1) | C. | an=n-1 | D. | ${a_n}={2^n}-2$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com