精英家教网 > 高中数学 > 题目详情
8.在直角梯形 ABCD 中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F 分别为
AB,AC 的中点,以A 为圆心,AD为半径的圆弧DE中点为P (如图所示).
若$\overrightarrow{AP}=λ\overrightarrow{ED}+μ\overrightarrow{AF}$,其中λ,μ∈R,则λ+μ的值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{3\sqrt{2}}}{4}$C.$\sqrt{2}$D.$\frac{3}{4}$

分析 建立如图所示直角坐标系,求出λ=$\frac{\sqrt{2}}{4}$,μ=$\frac{\sqrt{2}}{2}$,即可得出结论.

解答 解:建立如图所示直角坐标系,则A(0,0),
B(2,0),C(1,1),D(0,1),E(1,0),
F($\frac{3}{2}$,$\frac{1}{2}$),
所以$\overrightarrow{ED}$=(-1,1),$\overrightarrow{AF}$=($\frac{3}{2}$,$\frac{1}{2}$),
若$\overrightarrow{AP}=λ\overrightarrow{ED}+μ\overrightarrow{AF}$=(-λ+$\frac{3}{2}$μ,λ+$\frac{1}{2}μ$),
又因为以A 为圆心,AD为半径的圆弧DE中点为P,所以点P的坐标为P($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{AP}$=($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)
所以-λ+$\frac{3}{2}$μ=$\frac{\sqrt{2}}{2}$,λ+$\frac{1}{2}μ$=$\frac{\sqrt{2}}{2}$,所以λ=$\frac{\sqrt{2}}{4}$,μ=$\frac{\sqrt{2}}{2}$,
所以λ+μ=$\frac{3\sqrt{2}}{4}$
故选B.

点评 本题考查向量知识的运用,考查坐标系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若过点p(1,$\sqrt{3}$)作圆O:x2+y2=1的两条切线,切点分别为A、B两点,则|AB|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某学习小组6名同学的英语口试成绩如茎叶图所示,则这些成绩的中位数为85.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.空间两点A(2,5,4)、B(-2,3,5)之间的距离等于$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的内角 A、B、C 的对边分别为a、b、c,已知A=$\frac{π}{3}$,a=2$\sqrt{21}$,b=10,则c=(  )
A.2 或8B.2C.8D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线C1:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$( t 为参数),曲线C2:$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(r>0,θ为参数).
(1)当r=1时,求C 1 与C2的交点坐标;
(2)点P 为曲线 C2上一动点,当r=$\sqrt{2}$时,求点P 到直线C1距离最大时点P 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$f(x)=\left\{{\begin{array}{l}{{2^x},x≤1}\\{{{log}_9}^x,x>1}\end{array}}\right.$,则$f(x)>\frac{1}{2}$的解集是(-1,1]∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知M={x|-2≤x≤4},N={x|x≤2a-5}.
(1)若a=3,求M∩N;
(2)若M⊆N,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-1({x≤0})\\ f({x-1})+1({x>0})\end{array}\right.$,把函数g(x)=f(x)-x的零点的顺序排列成一个数列,则该数列的通项公式为(  )
A.${a_n}=\frac{{n({n-1})}}{2}$B.an=n(n-1)C.an=n-1D.${a_n}={2^n}-2$

查看答案和解析>>

同步练习册答案