精英家教网 > 高中数学 > 题目详情

【题目】在正方体中,P是侧面上的动点,垂直,则直线与直线AB所成角的正弦值的最小值是(

A.B.C.D.

【答案】B

【解析】

解法一:根据异面直线所成角的定义在图形中找出所成的角,然后在三角形中利用解三角形的知识求解;

解法二、解法三:建立空间直角坐标系,从而得出所成角的余弦值的表达式,求出其余弦值的最大值,即得其正弦值的最小值.

解法一:如图,连接,易证得直线平面

因为垂直,且是侧面上的动点,所以点是线段上的动点.

,所以直线与直线所成的角即

连接平面平面

在直角三角形中,设

,因此

因为,所以当时,取得最小值,最小值为

解法二:以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,

设正方体的棱长为1,则,设,其中

因为垂直,所以,所以

所以

因为,所以当时,取得最大值

此时取得最小值

解法三:如图,连接,易证得直线平面

因为垂直,且是侧面上的动点,所以点是线段上的动点,

为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,

设正方体的棱长为1,则

于是,设

所以,所以

所以

因为,所以当时,取得最大值

此时取得最小值

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了解高三男生的体能达标情况,抽调了120名男生进行立定跳远测试,根据统计数据得到如下的频率分布直方图.若立定跳远成绩落在区间的左侧,则认为该学生属“体能不达标的学生,其中分别为样本平均数和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).

1)若该校高三某男生的跳远距离为,试判断该男生是否属于“体能不达标”的学生?

2)该校利用分层抽样的方法从样本区间中共抽出5人,再从中选出两人进行某体能训练,求选出的两人中恰有一人跳远距离在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:,倾斜角为锐角的直线l过点与单位圆相切.

1)求曲线C的直角坐标方程和直线l的参数方程;

2)设直线l与曲线C交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.某市2019年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:

由表中数据可得该市各类岗位的薪资水平高低情况为(

A.数据挖掘>数据开发>数据产品>数据分析

B.数据挖掘>数据产品>数据开发>数据分析

C.数据挖掘>数据开发>数据分析>数据产品

D.数据挖掘>数据产品>数据分析>数据开发

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项的和为,记

1)若是首项为,公差为的等差数列,其中均为正数.

①当成等差数列时,求的值;

②求证:存在唯一的正整数,使得

2)设数列是公比为的等比数列,若存在)使得,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求函数的单调递增区间;

(2)设的内角的对应边分别为,且若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为,焦点.

1)求抛物线的方程;

2)过作直线交抛物线于两点.若直线分别交直线两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥ABCD中,ABDCBD均为边长为2的等边三角形,且二面角的平面角为120°,则该三棱锥的外接球的表面积为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两顶点分别为为双曲线的一个焦点,为虚轴的一个端点,若在线段(不含端点)上存在两点,使得,则双曲线的渐近线斜率的平方的取值范围是( )

A.B.

C.D.

查看答案和解析>>

同步练习册答案