【题目】已知,当时,.
(Ⅰ)若函数过点,求此时函数的解析式;
(Ⅱ)若函数只有一个零点,求实数的值;
(Ⅲ)设,若对任意实数,函数在上的最大值与最小值的差不大于1,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)
【解析】
试题(Ⅰ)将点 代入可得函数的解析式;(Ⅱ)函数有一个零点,即 ,根据对数运算后可得 ,将问题转化为方程有一个实根,分 和 两种情况,得到 值,最后再代入验证函数的定义域;(Ⅲ)首先根据单调性的定义证明函数的单调性,再根据函数的最大值减最小值 整理为 ,对任意 恒成立, 时,区间为函数的单调递增区间,所以只需最小值大于等于0,求解 的取值范围.
试题解析:(Ⅰ)函数过点,
, ,
此时函数
(Ⅱ)由得,
化为,
当时,可得,
经过验证满足函数只有一个零点;
当时,令解得,可得,
经过验证满足函数只有一个零点,
综上可得:或.
(Ⅲ)任取且,则,
,即,
在上单调递减.
函数在区间上的最大值与最小值分别为,
,
整理得对任意恒成立,
令,
函数在区间上单调递增,
,即,解得,
故实数的取值范围为.
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图所示.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为,,的三组用户中,用分层抽样的方法抽取10户居民,则月平均用电量在的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为平行四边形, 底面, 是棱的中点,
且.
(1)求证: 平面;
(2)如果是棱上一点,且直线与平面所成角的正弦值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足
(1)将利润表示为产量万台的函数;
(2)当产量为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PQ为某公园的一条道路,一半径为20米的圆形观赏鱼塘与PQ相切,记其圆心为O,切点为G.为参观方便,现新修建两条道路CA、CB,分别与圆O相切于D、E两点,同时与PQ分别交于A、B两点,其中C、O、G三点共线且满足CA=CB,记道路CA、CB长之和为.
(1)①设∠ACO=,求出关于的函数关系式;②设AB=2x米,求出关于x的函数关系式.
(2)若新建道路每米造价一定,请选择(1)中的一个函数关系式,研究并确定如何设计使得新建道路造价最少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题p:方程表示焦点在y轴上的椭圆,其离心率的范围是,
命题q:某人射击,每枪中靶的概率为,他连续射击两枪至少有一枪中靶的概率超过,若复合命题:非p为真,p或q为真,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com