精英家教网 > 高中数学 > 题目详情
4.已知直线x+my+6=0和(m-2)x+3y+2m=0互相平行,则实数m的取值为(  )
A.-1或3B.-1C.-3D.1或-3

分析 由两直线平行的性质可得$\frac{1}{m-2}$=$\frac{m}{3}$≠$\frac{6}{2m}$,由此求得实数m的值.

解答 解:由两条直线x+my+6=0和(m-2)x+3y+2m=0互相平行可得$\frac{1}{m-2}$=$\frac{m}{3}$≠$\frac{6}{2m}$,
解得 m=-1,
故选:B.

点评 本题主要考查两直线平行的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$).
(1)如图是用“五点法”画函数f(x)简图的列表,试根据表中数据求出函数f(x)的表达式;
(2)填写表中空格数据,并根据列表在所给的直角坐标系中,画出函数f(x)在一个周期内的简图.
ωx+φ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x  2  5 
 y  6  0 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2${\;}^{{{({a-x})}^k}}}$(a∈R),且f(1)>f(3),f(2)>f(3)(  )
A.若k=1,则|a-1|<|a-2|B.若k=1,则|a-1|>|a-2|C.若k=2,则|a-1|<|a-2|D.若k=2,则|a-1|>|a-2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.写出命题:“若x2-3x+2≠0,则x≠1且x≠2”的逆否命题“若x=1或x=2,则x2-3x+2=0”..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow{a}$=($\frac{1}{2}$,k),$\overrightarrow{b}$=(k-1,4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k的值为(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.-$\frac{1}{7}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列说法中
①命题“每个指数函数都是单调函数”是全称命题,而且是真命题;
②若m?α,n?α,m,n是异面直线,那么n与α相交;
③设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=2a(a>0),则动点P的轨迹是椭圆;
④若实数k满足0<k<9,则曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1与曲线$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1有相同的焦点.
其中正确的为①④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“2x>2”是“lgx>-1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}的公比为2,且a3a11=16,则a5=(  )
A.1B.-1C.±1D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设${a_n}=\frac{1}{n}sin\frac{nπ}{25}$,Sn=a1+a2+…+an,在S1,S2,…,S50中,正数的个数是(  )
A.25B.30C.40D.50

查看答案和解析>>

同步练习册答案