精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a+\overrightarrow b=(1,3)$,$\overrightarrow a-\overrightarrow b=(3,7)$,则$\overrightarrow a•\overrightarrow b$=(  )
A.-12B.-20C.12D.20

分析 设出向量$\overrightarrow a$、$\overrightarrow b$的坐标,根据坐标运算列出方程组求出$\overrightarrow{a}$、$\overrightarrow{b}$,再计算$\overrightarrow a•\overrightarrow b$.

解答 解:设向量$\overrightarrow a$=(x,y)
$\overrightarrow b$=(z,m),
由$\overrightarrow a+\overrightarrow b=(1,3)$,$\overrightarrow a-\overrightarrow b=(3,7)$,
得$\left\{\begin{array}{l}{x+z=1}\\{y+m=3}\\{x-z=3}\\{y-m=7}\end{array}\right.$,
解得x=2,y=5,z=-1,m=-2;
所以$\overrightarrow{a}$=(2,5),$\overrightarrow{b}$=(-1,-2);
所以$\overrightarrow a•\overrightarrow b$=2×(-1)+5×(-2)=-12.
故选:A.

点评 本题考查了平面向量的坐标运算与数量积运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知在三角形ABC中,角A,B都是锐角,且sin(B+C)+3sin(A+C)cosC=0,则tanA的最大值为(  )
A.$\frac{3}{4}$B.$\sqrt{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足对任意的n∈N*,都有2an+1-an=0,又a2=8,则S8=$\frac{255}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在复平面内,复数$\frac{i}{3-3i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数$f(x)=\sqrt{3}sinx-cosx$,$x∈[{-\frac{π}{2},\frac{π}{2}}]$,则函数f(x)值域为(  )
A.[-1,1]B.[-2,1]C.$[{-2,\sqrt{3}}]$D.$[{-1,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.△ABC中,A(0,-2),B(0,2),且|CA|,|AB|,|CB|成等差数列,则C点的轨迹方程是$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{12}=1(x≠0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心率e的取值范围是(  )
A.(1,$\frac{3}{2}$)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,$\sqrt{3}$)D.($\sqrt{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.圆心为O(-1,3),半径为2的圆的方程为(  )
A.(x-1)2+(y+3)2=2B.(x+1)2+(y-3)2=4C.(x-1)2+(y+3)2=4D.(x+1)2+(y-3)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=mx2-2x+m的值域为[0,+∞),则实数m的值为1.

查看答案和解析>>

同步练习册答案