精英家教网 > 高中数学 > 题目详情
18.函数y=(k+2)ax+2-b(a>0,且a≠1)是指数函数,则k=-1,b=2.

分析 由指数函数的定义,列出方程组,求出k,b的值.

解答 解:∵函数y=(k+2)ax+2-b(a>0,且a≠1)是指数函数,
∴$\left\{\begin{array}{l}k+2=1\\ 2-b=0\end{array}\right.$,
解得:$\left\{\begin{array}{l}k=-1\\ b=2\end{array}\right.$,
故答案为:-1,2

点评 不同考查了指数函数定义的应用问题,解题的关键是根据指数函数的定义列出方程组,是基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在长方体ABCD-A1B1C1D1中AA1=a,∠BAB1=∠B1A1C1=30°,则异面直线AB1与A1C1所成角的余弦值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=x2+2x-3,x∈[0,2]的值域为[-3,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线x2-$\frac{{y}^{2}}{4}$=1,试问:是否存在过点A(2,1)的直线与双曲线交于相异两点P、Q.且点A平分线段PQ?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,若g(x)=ax3-2bx2在区间[t,t+1]上单调递增,则实数t的取值范围是(  )
A.(-2,-1)B.[-2,-1]C.[-2,0]D.[-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{ax+b}{1-{x}^{2}}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{4}{3}$,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.利用秦九韶算法判断方程x5+x3+x2-1=0在[0,2]上是否存在实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过点P1(1,5)作一条直线交x轴于点A,过点P2(2,7)作直线P1A的垂线,交y轴于点B,点M在线段AB上,且|BM|:|MA|=1:2,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.
(1)求异面直线A1B和AC所成角的余弦值;
(2)求异面直线PC和A1C1所成的角.

查看答案和解析>>

同步练习册答案