精英家教网 > 高中数学 > 题目详情
过椭圆左焦点F,倾斜角为
π
3
的直线交椭圆于A,B两点,若|FA|=2|FB|,则椭圆的离心率为______.
设准线与x轴交点为M,过A、B作准线的垂线,垂足分别为D、C,过B作BH⊥AD,垂足为H,交x轴于E.
设|AB|=3t,因为|FA|=2|FB|,则|BF|=t,|AF|=2t,
因为AB倾斜角为60°,所以∠ABH=30°,则|AH|=
1
2
|AB|=
3
2
t,
根据椭圆第二定义,可得|AH|=|AD|-|BC|=
2t
e
-
t
e
=
t
e

3
2
t=
t
e

∴e=
2
3

故答案为:
2
3

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(13分)已知F1、F2是椭圆c1(a>b>0)的左、右焦点,A为右顶点,P为椭圆c1上任意一点,且最大值的取值范围是[c2,3c2],c2=a2-b2.(1)求椭圆c1离心率e的取值范围;(2)设双曲线c2以椭圆c1焦点为顶点,顶点为焦点,B是双曲线c2在第一象限上任意一点,当椭圆c1离心率e取得最小值时,问是否存在正常数λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且准线方程为x=-1.
(1)求抛物线C的标准方程;
(2)过抛物线C焦点的直线l交抛物线于A,B两点,如果要同时满足:①|AB|≤8;②直线l与椭圆3x2+2y2=2有公共点,试确定直线l倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2,且过点(
2
6
2
)

(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.
(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;
(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定点A(2,0),它与抛物线y2=x上的动点P连线的中点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆G:x2+y2-2x-
2
y=0,经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为
6
的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y=x2上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a、b是非零实数,则方程bx2+ay2=ab及ax+by=0所表示的图形可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案