精英家教网 > 高中数学 > 题目详情

【题目】已知函数的导函数.

1)若,求的值;

2)讨论的单调性;

3)若恰有一个零点,求的取值范围.

【答案】(1);(2)见解析;(3

【解析】

1)利用列方程,解方程求得的值.

2)求得函数的导函数,对分成等四种情况,分类讨论的单调区间.

3)结合(1)求得的的单调区间,判断出的单调区间,结合的取值范围、零点的存在性定理进行分类讨论,由此求得的取值范围.

1

,得,得

2

①当时,令,得,令,得

所以上单调递增,在上单调递减;

②当时,令,得

i)当时,,所以上单调递增;

ii)当时,令,得;令,得

所以单调递增,在单调递减;

iii)当时,令,得;令,得

所以单调递增,在单调递减;

综上:①当时,上单调递增;在单调递减;

i)当时,上单调递增;

ii)当时,单调递增,在单调递减;

iii)当时,单调递增,在单调递减;

3)①当时,由(2)知,单调递增,在单调递减,所以单调递增,在单调递减,又因为,所以恰有一个零点,符合题意;

i)当时,单调递增,所以单调递增,又,所以在恰有一个零点,符合题意;

ii)当时,单调递增,在单调递减,在单调递增,

所以单调递增,在单调递减,在单调递增,

因为 ,所以是函数的一个零点,且

时,取

所以,所以恰有一个零点,

所以在区间有两个零点,不合题意;

iii)当时,单调递增,在单调递减,在单调递增,所以单调递增,在单调递减,在单调递增,

又因为,所以是函数的一个零点,且

又因为,所以

所以在区间有两个零点,不合题意;

综上的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆,设是椭圆上任一点,从原点向圆作两条切线,分别交椭圆于点.

1)若直线互相垂直,且圆心落在第一象限,求圆的圆心坐标;

2)若直线的斜率都存在,并记为.

①求证:

②试问是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn,公比q0S2=2a2-2S3=a4-2,数列{an}满足a2=4b1nbn+1-n+1bn=n2+n,(nN*.

1)求数列{an}的通项公式;

2)证明数列{}为等差数列;

3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光伏发电是利用太阳能电池及相关设备将太阳光能直接转化为电能.近几年在国内出台的光伏发电补贴政策的引导下,某地光伏发电装机量急剧上涨,如下表:

某位同学分别用两种模型:①进行拟合,得到相应的回归方程并进行残差分析,残差图如下(注:残差等于):

经过计算得

(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由.

(2)根据(1)的判断结果及表中数据建立y关于x的回归方程,并预测该地区2020年新增光伏装机量是多少.(在计算回归系数时精确到0.01)

附:归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求证:

(2)讨论函数在R上的零点个数,并求出相对应的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线,过抛物线焦点且与轴垂直的直线与抛物线相交于两点,且的周长为.

(1)求抛物线的方程;

(2)若直线过焦点且与抛物线相交于两点,过点分别作抛物线的切线,切线相交于点,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.

(1)求椭圆的方程;

(2)不经过点的直线)与椭圆交于两点,关于原点的对称点为(与点不重合),直线轴分别交于两点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知点,过点作直线与圆和抛物线都相切.

1)求抛物线的两切线的方程;

2)设抛物线的焦点为,过点的直线与抛物线相交于两点,与抛物线的准线交于点(其中点靠近点),且,求的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若是函数的导函数的零点,求的单调区间;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案