精英家教网 > 高中数学 > 题目详情

设A={x|x2-8x+15=0},B={x|ax-1=0}.
(1)若数学公式,试判定集合A与B的关系;
(2)若B⊆A,求实数a组成的集合C.

解:(1)∵B={5}的元素5是集合A={5,3}中的元素,
集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,
∴B?A.
故答案为:B?A.
(2)当a=0时,由题意B=∅,又A={3,5},B⊆A,
当a≠0,B={},又A={3,5},B⊆A,
此时或5,则有 a=或a=
故答案为:
分析:(1)若,B={5}的元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B?A.
(2)先对B集合进行化简,再根据A集合的情况进行分类讨论求出参数的值,写出其集合即可
点评:本题考查集合关系中的参数取值问题,求解问题的关键是正确理解A⊆B的意义及对其进行正确转化,本题中有一个易错点,即A是空集的情况解题时易漏掉,解答时一定要严密.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A=B,求实数a的值;
(2)若∅?A∩B,A∩C=∅,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-2x-8<0},B={x|x2+2x-3>0}C={x|x2-3ax+2a2<0}
(1)求A∩B与(?RA)∩?RB);
(2)若C⊆A∩B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)A∩B=A∪B,求a的值;
(2)若∅?(A∩B)且A∩C=∅,求a的值;
(3)A∩B=A∩C≠∅,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.求分别满足下列条件的a的值.
(1)A∩B=A∪B;
(2)A∩B≠φ,且A∩C=φ.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-2x-8<0},B={x|x2+2x-3>0},
(1)若C={x|x2-3ax+2a2<0},试求实数a的取值范围,使C⊆A且C⊆B;
(2)若C={x|x2-3ax+2a<0},试求实数a的取值范围,使C⊆A且C⊆B.

查看答案和解析>>

同步练习册答案