精英家教网 > 高中数学 > 题目详情
19.已知cos(θ+$\frac{π}{6}$)=$\frac{5}{13}$,θ∈(0,$\frac{π}{2}$),则cosθ=(  )
A.$\frac{12+3\sqrt{3}}{26}$B.$\frac{12+5\sqrt{3}}{26}$C.$\frac{6+3\sqrt{3}}{13}$D.$\frac{6+4\sqrt{3}}{13}$

分析 由同角三角函数的基本关系可得sin(θ+$\frac{π}{6}$),而cosθ=cos[(θ+$\frac{π}{6}$)-$\frac{π}{6}$]=$\frac{\sqrt{3}}{2}$cos(θ+$\frac{π}{6}$)+$\frac{1}{2}$sin(θ+$\frac{π}{6}$),代入计算可得.

解答 解:∵cos(θ+$\frac{π}{6}$)=$\frac{5}{13}$,θ∈(0,$\frac{π}{2}$),
∴sin(θ+$\frac{π}{6}$)=$\sqrt{1-(\frac{5}{13})^{2}}$=$\frac{12}{13}$,
∴cosθ=cos[(θ+$\frac{π}{6}$)-$\frac{π}{6}$]
=$\frac{\sqrt{3}}{2}$cos(θ+$\frac{π}{6}$)+$\frac{1}{2}$sin(θ+$\frac{π}{6}$)
=$\frac{\sqrt{3}}{2}×\frac{5}{13}$+$\frac{1}{2}×\frac{12}{13}$=$\frac{12+5\sqrt{3}}{26}$,
故选:B.

点评 本题考查两角和与差的三角函数公式,涉及同角三角函数的基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列命题中,不正确的是(  )
A.$|\overrightarrow a|=\sqrt{{{(\overrightarrow a)}^2}}$B.λ($\overrightarrow a$•$\overrightarrow b$)=$\overrightarrow a$•(λ$\overrightarrow b$)C.($\overrightarrow a$-$\overrightarrow b$)$\overrightarrow c$=$\overrightarrow a$•$\overrightarrow c$-$\overrightarrow b$•$\overrightarrow c$D.$\overrightarrow a$与$\overrightarrow b$共线?$\overrightarrow a$•$\overrightarrow b$=$|{\overrightarrow a}||{\overrightarrow b}|$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设实数x,y满足约束条件$\left\{\begin{array}{l}x-y-2≤0\\ x+2y-5≥0\\ y≤2\end{array}$,则u=$\frac{x+y}{x}$的取值范围是(  )
A.$[{\frac{4}{3},\frac{3}{2}}]$B.$[{\frac{1}{3},2}]$C.$[{\frac{4}{3},3}]$D.$[{\frac{3}{2},3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若m∈R,命题p:设x1,x2是方程x2-ax-3=0的两个实根,不等式|m+1|≥|x1-x2|对任意实数a∈[-2,2]恒成立,命题q:函数f(x)=x3+mx2+(m+$\frac{10}{3}$)x+3在(-∞,+∞)上有极值,求使p且¬q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是R上的增函数,点A(1,3)、B(-1,1)在它的图象上,f-1(x)为它的反函数,则不等式|f-1(log2x)|<1的解是(2,8).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直角坐标系内的一动点,运动时该点坐标满足不等式y>x,则这个动点的运动区域(用阴影表示)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的奇函数f(x),满足f(x+4)=f(x),则f(8)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题“?x>4,x2>16”的否定是?x>4,x2≤16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.sin$\frac{1}{2}$、cos$\frac{1}{2}$、tan$\frac{1}{2}$的大小关系为(  )
A.sin$\frac{1}{2}>cos\frac{1}{2}>tan\frac{1}{2}$B.cos$\frac{1}{2}>tan\frac{1}{2}>sin\frac{1}{2}$
C.tan$\frac{1}{2}>sin\frac{1}{2}>cos\frac{1}{2}$D.tan$\frac{1}{2}>cos\frac{1}{2}>sin\frac{1}{2}$

查看答案和解析>>

同步练习册答案