精英家教网 > 高中数学 > 题目详情
17.函数$y=\sqrt{{x^2}+x-12}$+$\frac{{9+{x^2}}}{{9-{x^2}}}$的定义域是{x|x≤-4或x>3}.

分析 由根式内部的代数式大于等于0,且分式的分母不为0联立不等式组得答案.

解答 解:由$\left\{\begin{array}{l}{{x}^{2}+x-12≥0}\\{9-{x}^{2}≠0}\end{array}\right.$,解得:x≤-4或x>3.
∴函数$y=\sqrt{{x^2}+x-12}$+$\frac{{9+{x^2}}}{{9-{x^2}}}$的定义域是{x|x≤-4或x>3}.
故答案为:{x|x≤-4或x>3}.

点评 本题考查函数的定义域及其求法,训练了一元二次不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求过椭圆内点P(4,2)且被P平分的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列不等式中成立的是(  )
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a>b>0,则$\frac{b}{a}$>$\frac{b+1}{a+1}$D.若a>b>0,则a+$\frac{1}{b}$>b+$\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm的圆形蛋皮等分成5个扇形蛋皮,用一个扇形蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计).
(1)求该蛋筒冰激凌的高度;
(2)求该蛋筒冰激凌的体积(精确到0.01cm3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{b}{a}}}({x^2}-4x+13)$,则函数g(x)的最小值为(  )
A.2log23B.2C.3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列说法中不正确的是③④⑤(只需填写序号)
①设集合A=φ,则φ⊆A;
②若集合A={x|x2-1=0},B={-1,1},则A=B;
③在集合A到B的映射中,对于集合B中的任何一个元素y,在集合A中都有唯一的一个元素x与之对应;
④函数f(x)=$\frac{1}{x}$的单调减区间是(-∞,0)∪(0,+∞);
⑤设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a>2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x2-4ax+a2-2a+2.
(1)若函数f(x)在区间[0,2]上的最大值记为g(a),求g(a)的解析式;
(2)若函数f(x)在区间[0,2]上的最小值为3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={x∈N+|x<9},(∁UA)∩B={1,6},A∩(∁UB)={2,3},∁U(A∪B)={5,7,8},则B=(  )
A.{2,3,4}B.{1,4,6}C.{4,5,7,8}D.{1,2,3,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$(1,\frac{3}{2})$,且离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)若椭圆C左顶点为A,动直线l过点P(4,0)且与椭圆C相交于D,E两点(不同于点A),求直线AD与直线AE的斜率之乘积.
(3)在(2)条件下,点D关于x轴的对称点记为F,证明:直线EF过定点,求出定点坐标.

查看答案和解析>>

同步练习册答案