精英家教网 > 高中数学 > 题目详情
13.直线(m+2)x-(2m-1)y-(3m-4)=0,恒过定点(-1,-2).

分析 直线(m+2)x-(2m-1)y-(3m-4)=0化为m(x-2y-3)+(2x+y+4)=0,令$\left\{\begin{array}{l}{x-2y-3=0}\\{2x+y+4=0}\end{array}\right.$,解得即可.

解答 解:直线(m+2)x-(2m-1)y-(3m-4)=0化为m(x-2y-3)+(2x+y+4)=0,
令$\left\{\begin{array}{l}{x-2y-3=0}\\{2x+y+4=0}\end{array}\right.$,解得x=-1,y=-2.
∴直线恒过定点(-1,-2).
故答案为:(-1,-2).

点评 本题考查了直线系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.定义在R上函数f(x)满足f(1)=1,f′(x)<2,则满足f(x)>2x-1的x的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为常数,函数f(x)=xlnx-$\frac{1}{2}$ax2
(1)当a=0时,求函数f(x)的最小值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求实数a的取值范围;
②求证:x1x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=x2+2(a-1)x在区间[4,+∞)上是增函数,则实数a的取值范围是(  )
A.a≥-3B.a≤-3C.a≤3D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图是一个几何体的三视图,该几何体的体积是30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线l与双曲线x2-y2=1交于A、B两点,若线段AB的中点为C(2,1),则直线l的斜率为(  )
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(1)求证:A1B∥面ADC1;          
(2)求直线B1C1与平面ADC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)满足f(x)=f(2-x),x∈R,且当x≤1时,f(x)=x3-x2-4x+4,则方程f(x)=0的所有实数根之和为(  )
A.2B.3C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.解方程:x2-2|x-1|-2=0.

查看答案和解析>>

同步练习册答案