精英家教网 > 高中数学 > 题目详情

已知等差数列中满足.
(1)求和公差
(2)求数列的前10项的和.

(1);(2).

解析试题分析:本题是等差数列基本量的计算问题.(1)将题中条件用首项与公差表示,可得,然后求解即可;(2)由(1)中计算得的,结合等差数列的前项和公式计算即可.
试题解析:(1)由已知得                  3分
所以                              5分
(2)由等差数列前项和公式可得   8分
所以数列的前10项的和为                    10分.
考点:等差数列的通项公式及其前项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列项和
(1)求其通项;(2)若它的第项满足,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等差数列,,其前n项和为,若
(1)求数列的通项;(2)求的最小值,并求出相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{bn}满足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2n}是等差数列;
(3)设数列{Tn}满足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在实数pq,对任意n∈N*都有pT1T2T3+…+Tnq成立,试求qp的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列前n项和=), 数列为等比数列,首项=2,公比为q(q>0)且满足为等比数列.
(1)求数列的通项公式;
(2)设,记数列的前n项和为Tn,,求Tn。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

称满足以下两个条件的有穷数列阶“期待数列”:
;②.
(1)若等比数列阶“期待数列”,求公比q及的通项公式;
(2)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记n阶“期待数列”的前k项和为
(i)求证:
(ii)若存在使,试问数列能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列满足,则称数列为“平方递推数列”.已知数列中,,点在函数的图象上,其中为正整数.
(Ⅰ)证明数列是“平方递推数列”,且数列为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前项积为,即,求
(Ⅲ)在(Ⅱ)的条件下,记,求数列的前项和,并求使的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设递增等差数列的前n项和为,已知的等比中项.
(l)求数列的通项公式;
(2)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为的等差中项().
(Ⅰ)证明数列为等比数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)是否存在正整数,使不等式)恒成立,若存在,求出的最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案