精英家教网 > 高中数学 > 题目详情
一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则球的表面积是(  )
A、3π
B、2π
C、π
D、
2
考点:球的体积和表面积,球内接多面体
专题:空间位置关系与距离
分析:该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥.其中底面ABCD是边长为1的正方形,高为CC1=1,求出其外接球的半径,代入球的表面积公式,可得答案.
解答: 解:该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥.
其中底面ABCD是边长为1的正方形,高为CC1=1,
该几何体的所有顶点都是棱长为1的正方体的顶点,
故几何体的外接球,即为棱长为1的正方体的外接球,
故球的直径R满足:2R=
12+12+12
=
3

∴R=
3
2

∴球的表面积是4π×(
3
2
2=3π
故选:A
点评:本题考查三视图与直观图的关系,考查空间想象能力,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为(  )
A、(-24,7)
B、(-∞,-24)∪(7,+∞)
C、(-7,24)
D、(-∞,-7)∪(24,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(a,b)(ab≠0)是圆x2+y2=r2内一点,直线g是以M为中点的弦所在直线,直线l的方程为ax+by+r2=0,则直线l(  )
A、l∥g,且与圆相切
B、l∥g,且与圆相离
C、l⊥g,且与圆相切
D、l⊥g,且与圆相离

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x,y的不等式组
3x-y+1>0
x+3m<0
y-m>0
表示的平面区域内存在点P(x0,y0),满足x0-3y0=3,求得m的取值范围是(  )
A、(-∞,-
1
3
B、(-∞,
1
3
C、(-∞,-
1
2
D、(-∞,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
均为单位向量,其夹角为θ,若|
a
-
b
|<1,则θ的取值范围是(  )
A、(0,
π
3
B、[0,
π
3
C、[0,
3
D、(
π
3
,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b,c∈R,a>b,则下列不等式成立的是(  )
A、
a
c2+1
b
c2+1
B、a2>b2
C、
1
a
1
b
D、a|c|>b|c|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,0),B(0,2),C(cosα,sinα).
(Ⅰ)若α∈[-π,0],且|
AC
|=|
BC
|,求角α;
(Ⅱ)若α∈[
π
2
,π],且
AC
BC
,求
sin2α
2
sin(α-
π
4
)-cos2α
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)是定义在R上的函数,对任意实数x、y满足f(x)+f(y-x)=f(y),且当x>0时,f(x)<0.若对任意t∈(1,2),f(tx2-2x)<f(t+2)恒成立,求x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的方程4x-2x+1-3=0.

查看答案和解析>>

同步练习册答案