精英家教网 > 高中数学 > 题目详情

设G,Q分别为△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.

(Ⅰ)求点C的轨迹E的方程;

(Ⅱ)若l0是过点P(1,0)且垂直于x轴的直线,是否存在直线l,使得l与曲线E交于两个不同的点M,N,且MN恰被l0平分?若存在,求出l的斜率的取值范围;若不存在,请说明理由.

答案:
解析:

  解:(I)设,则,因为,可得;又由

  可得点的轨迹的方程为.  6分(没有扣1分)

  (II)假设存在直线,代入并整理得

  ,  8分

  设,则  10分

  又

  ,解得  13分

  特别地,若,代入得,,此方程无解,即

  综上,的斜率的取值范围是.  14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设G,Q分别为△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.
(I)求点C的轨迹E的方程;
(II)若l0是过点P(1,0)且垂直于x轴的直线,是否存在直线l,使得l与曲线E交于两个不同的点M,N,且MN恰被l0平分?若存在,求出l的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设G、M分别为不等边△ABC的重心与外心,A(-1,0)、B(1,0),GM∥AB.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0.1)并与曲线E交于P、Q两点,且满足
OP
OQ
=-2
?若存在,求出直线l的方程,若不存在,说明理由.
注:三角形的重心的概念和性质如下:设△ABC的重心,且有
GD
GC
=
GE
GA
=
GF
GB
=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设G、M分别为不等边△ABC的重心与外心,A(-1,0)、B(1,0),GM∥AB.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线E,是否存在直线l,使l过点(0.1)并与曲线E交于P、Q两点,且满足数学公式?若存在,求出直线l的方程,若不存在,说明理由.
注:三角形的重心的概念和性质如下:设△ABC的重心,且有数学公式

查看答案和解析>>

科目:高中数学 来源:2007年江苏省盐城市滨海中学高考数学最后一模试卷(解析版) 题型:解答题

设G,Q分别为△ABC的重心和外心,A(0,-1),B(0,1),且GQ∥AB.
(I)求点C的轨迹E的方程;
(II)若l是过点P(1,0)且垂直于x轴的直线,是否存在直线l,使得l与曲线E交于两个不同的点M,N,且MN恰被l平分?若存在,求出l的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案