精英家教网 > 高中数学 > 题目详情
11.已知x、y满足不等式组$\left\{\begin{array}{l}{y-x≤0}\\{x+y≥0}\\{x≤1}\end{array}\right.$,求x+2y的最大值和最小值.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{y-x≤0}\\{x+y≥0}\\{x≤1}\end{array}\right.$作出可行域如图,

令z=x+2y,化为$y=-\frac{x}{2}+\frac{z}{2}$,
联立$\left\{\begin{array}{l}{x=1}\\{x+y=0}\end{array}\right.$,得A(1,-1),
联立$\left\{\begin{array}{l}{x=1}\\{y-x=0}\end{array}\right.$,得B(1,1),
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过A时,z有最小值为1+2×(-1)=-1;
当直线$y=-\frac{x}{2}+\frac{z}{2}$过B时,z有最大值为1+2×1=3.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.“鸡兔同笼”是我国隋朝时期的数学著作《孙子算经》中的一个有趣而具有深远影响的题目:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”请画出一个解决这个问题的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义在R上奇函数f(x)满足f(x+2)=-f(x),且x∈(0,1]时,f(x)=2x,求值:
(1)f(98)=0;
(2)f($\frac{17}{2}$)=$\sqrt{2}$;
(3)f($\frac{100}{3}$)=$\root{3}{4}$;
(4)f(log218)=$\frac{9}{4}$;
(5)f(2015)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.化简:$\frac{1}{co{s}^{2}α\sqrt{1+ta{n}^{2}α}}$-$\sqrt{\frac{1+sinα}{1-sinα}}$(α为第二象限角)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知n∈N*,设函数fn(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+…+(-1)n•$\frac{{x}^{n}}{n}$(x∈R).函数φ(x)=f3(x)+ax2的图象在点B(1,φ(1))处的切线的斜率为1.
(1)求a的值.
(2)求z的取值范围,使不等式φ(x)≤z对于任意x∈[0,2]恒成立;
(3)证明:存在无数个n∈N*,对任意给定的两个不同的x1,x2必有fn(x1)=fn(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若实数x,y满足x2+y2≤4,求以下代数式的最值.
(1)$\frac{y-2}{x+3}$,(2)|3x-2y+1|;(3)x2+2x+y2-y+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A,B分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点与上顶点.若直线AB被圆x2+y2=a2截得的弦长为2b,记椭圆的离心率为e,则e2=$\frac{3-\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果函数f(x)与g(x)的定义域相同,且f(x)是奇函数,g(x)是偶函数,请证明F(x)=f(x)g(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.化根式$a\sqrt{a}$为分数指数幂的结果为(  )
A.${a^{\frac{3}{2}}}$B.${a^{\frac{2}{3}}}$C.${a^{\frac{3}{4}}}$D.${a^{\frac{4}{3}}}$

查看答案和解析>>

同步练习册答案