精英家教网 > 高中数学 > 题目详情
18.已知抛物线y2=2px(p>0)上的一点M(1,m)到其焦点的距离为5,则实数p=8.

分析 通过点M(1,m)到其焦点的距离为5,利用抛物线的定义,求解即可.

解答 解:∵抛物线方程为y2=2px,
∴抛物线焦点为F($\frac{p}{2}$,0),准线方程为x=-$\frac{p}{2}$,又∵点M(1,m)到其焦点的距离为5,
∴p>0,根据抛物线的定义,得1+$\frac{p}{2}$=5,
∴p=8.
故答案为:8.

点评 本题给出一个特殊的抛物线,在已知其上一点到焦点距离的情况下,求准线方程.着重考查了抛物线的定义和标准方程,以及抛物线的基本概念,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an},其前n项和为${S_n}=\frac{3}{2}{n^2}+\frac{7}{2}n\;(n∈{N^*})$.
(Ⅰ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅱ)若数列{bn}满足${b_n}={2^{{a_n}-2}}$,求数列{bn}的通项公式,并证明数列{bn}是等比数列;
(Ⅲ)若数列{cn}满足${c_n}={a_n}•{b_n}^{\frac{1}{3}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知两个非零平面向量$\overrightarrow a,\overrightarrow b$满足:对任意λ∈R恒有$|{\overrightarrow a-λ\overrightarrow b}|≥|{\overrightarrow a-\frac{1}{2}\overrightarrow b}|$,则:①若$|{\overrightarrow b}|=4$,则$\overrightarrow a•\overrightarrow b$=8;②若$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{3}$,则$\frac{{|{2\overrightarrow a-t•\overrightarrow b}|}}{{|{\overrightarrow b}|}}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直三棱柱ABC-A1B1C1中,AC=4,CB=AA1=2,AB=2$\sqrt{3}$ E,F,G分别是A1C1,BC,AA1的中点.
(1)证明:平面AEB⊥平面BB1CC1
(2)证明:C1F∥平面ABE
(3)求三棱锥C1-B1GF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,已知空间四边形ABCD的边BC=AC,AD=BD,BE⊥CD于点E,AH⊥BE于点H,求证:AH⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=2sin(2x+$\frac{π}{6}$).
(1)求函数的对称轴方程;
(2)求x∈[$\frac{π}{12}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(1,-1),求5$\overrightarrow{a}$•3$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用分解因式法求解下列一元二次方程:
(1)2x2-7x+6=0;
(2)8x2-2x-1=0;
(3)2x2-x-28=0;
(4)12x2+25x+12=0;
(5)10x=3x2+8;
(6)2x2-11x+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(1,x),记f(x)为向量$\overrightarrow{b}$在$\overrightarrow{a}$上投影的数量,已知x∈(-π,π),则f(x)为(  )
A.既是奇函数又是偶函数B.偶函数,且有两个零点
C.奇函数,且有三个零点D.偶函数,且只有一个极值点

查看答案和解析>>

同步练习册答案