【题目】已知椭圆的两焦点为, , 为椭圆上一点,且到两个焦点的距离之和为6.
(1)求椭圆的标准方程;
(2)若已知直线,当为何值时,直线与椭圆有公共点?
(3)若,求的面积.
【答案】(1);(2);(3)7.
【解析】试题分析:(1)由焦点坐标得到c,由椭圆的定义求出a,进而求出b的值,即可得出椭圆的方程;(2)联立直线与椭圆方程,消去y, 直线与椭圆有公共点即所得一元二次方程有解,计算得出m的范围;(3) 中, ,由勾股定理有,结合椭圆的定义代入化简可得,根据三角形的面积公式求解即可.
试题解析:
(1)∵椭圆的焦点是和,椭圆上一点到两个焦点的距离之和为6,
∴设所求的椭圆方程为,
∴依题意有, ,∴,
∴所求的椭圆方程为.
(2)由得,
由得,则,
∴当时,直线与椭圆有公共点.
(3)∵点是椭圆上一点,
∴由椭圆定义有,①
又中, ,
∴由勾股定理有,即,②
①2 ②,得,
∴.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
已知直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点P的极坐标为。
(Ⅰ)求直线l以及曲线C的极坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求△PAB的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修44:坐标系与参数方程
在直角坐标系中,已知直线l1: (, ),抛物线C: (t为参数).以原点为极点, 轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求直线l1 和抛物线C的极坐标方程;
(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)作出函数f(x)的图象,并指出其单调区间.(不需要严格证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中, // , ⊥, ⊥, 点是 边的中点, 将△沿折起,使平面⊥平面,连接, , , 得到如图所示的几何体.
(Ⅰ)求证: ⊥平面;
(Ⅱ)若, ,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各组函数f(x)与g(x)的图象相同的是( )
A.f(x)=x,g(x)=( )2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com