精英家教网 > 高中数学 > 题目详情

用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),则当n=k+1时,左边的式子是


  1. A.
    k个数的积
  2. B.
    (k+1)个数的积
  3. C.
    2k个数的积
  4. D.
    (2k+1)个数的积
B
分析:先根据题意求出n=k时左边的式子,观察其结构特征,即得所求.
解答:当n=k时,左边等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),
共(k+1)个数的积,
则当n=k+1时,左边的式子是(k+1)个数的积
故选B.
点评:本题考查用数学归纳法证明等式,考查观察能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*)时,从k到k+1,左端需要增加的代数式是(  )
A、2k+1
B、2(2k+1)
C、
2k+1
k+1
D、
2k+3
k+1

查看答案和解析>>

科目:高中数学 来源: 题型:

2、用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n•1•2•3•…•(2n-1)(n∈N*),则当n=k+1时,左边的式子是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)给出下列四个命题:
①命题:“设a,b∈R,若ab=0,则a=0或b=0”的否命题是“设a,b∈R,若ab≠0,则a≠0且b≠0”; 
②将函数y=
2
sin(2x+
π
4
)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移
π
4
个单位长度,得到函数y=
2
cosx的图象; 
③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1); 
④函数f(x)=ex-x-1(x∈R)有两个零点.
其中所有真命题的序号是
①③
①③

查看答案和解析>>

同步练习册答案