精英家教网 > 高中数学 > 题目详情
若xlog23=1,则3x+3-x的值为
 
考点:对数的运算性质,有理数指数幂的化简求值
专题:函数的性质及应用
分析:由已知得x=log32,从而3x+3-x=3 log32+3 -log32,由此能求出结果.
解答: 解:∵xlog23=1,∴x=log32,
∴3x+3-x=3 log32+3 -log32
=2+
1
2

=
5
2

故答案为:
5
2
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意对数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

[x]表示不超过x的最大整数,函数f(x)=|x|-[x]
①f(x)的定义域为R;
②f(x)的值域为(0,1];
③f(x)是偶函数;
④f(x)不是周期函数;
⑤f(x)的单调增区间为(k,k+1)(k∈N).
上面的结论正确的个数是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知一次函数y=kx+k的图象(直线l)与x轴交于点Q,M是二次函数y=
1
2
(x2+x)上的动点(不在l上),A、B在l上,MA⊥l,MB⊥x轴,是否存在这样的k,使得
|QB|2
|QA|
为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a1=1,前10项和S10=100.
(1)求数列{an}的公差d;
(2)求数列{an}的通项公式;
(3)设bn=2an+1,问{bn}是否为等比数列;并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
2
x2-ax+lnx存在垂直于y轴的切线,则实数a的取值范围是(  )
A、(-∞,-2]∪[2,+∞)
B、(-∞,-2)∪(2,+∞)
C、[2,+∞)
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

对数函数f(x)=logax具有性质:f(
1
x
)=-f(x),请写出另一函数g(x)(不是对数函数),也满足g(
1
x
)=-g(x),且它的定义域必须包含(0,+∞),这个函数可以是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:x(x-3)=0,命题q:x=3,则命题p是命题q的(  )
A、必要不充分条件
B、充分不必要条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)为定义在[-1,1]上的偶函数,且在[0,1]单调递增,则满足f(2m-1)<f(m)的实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在非零实数集上的函数f(xy)=f(x)+f(y),则函数f(x)的奇偶性是
 

查看答案和解析>>

同步练习册答案