精英家教网 > 高中数学 > 题目详情

已知,数列的前项和为,点在曲线,且.
(1)求数列的通项公式;
(2)数列的前项和为,且满足,求数列的通项公式;
(3)求证:.

(1);(2);(3)详见解析.

解析试题分析:(1)先根据函数的解析式,由条件“点在曲线”上得出之间的递推关系式,然后进行变形得到,于是得到数列为等差数列,先求出数列的通项公式,进而求出数列的通项公式;(2)根据(1)中的结果结合已知条件得到
,两边同时除以,得到,构造数列为等差数列,先求出数列的通项公式,然后求出,然后由之间的关系求出数列的通项公式;(3)对数列中的项进行放缩法
,再利用累加法即可证明相应的不等式.
试题解析:(1),∴
数列是等差数列,首项,公差

(2)由

数列是等差数列,首项为,公差为
,当时,
也满足上式,
(3)

.
考点:1.构造等差数列求通项;2.定义法求通项公式;3.放缩法证明数列不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在数列中,前n项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,数列前n项和为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:,该数列的前三项分别加上l,l,3后顺次成为等比数列的前三项.
(I)求数列的通项公式;
(II)设,若恒成立,求c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列前三项的和为,前三项的积为.
(1)求等差数列的通项公式;
(2)若成等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列,求这三个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)令,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:是数列的前n项和.数列前n项的积为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)是否存在常数a,使得成等差数列?若存在,求出a,若不存在,说明理由;
(Ⅲ)是否存在,满足对任意自然数时,恒成立,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列,公差不为零,,且成等比数列;
⑴求数列的通项公式;
⑵设数列满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列为等差数列,且
(1)求数列的通项公式;
(2)若数列满足求数列的前项和

查看答案和解析>>

同步练习册答案