精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x2-(-1)n2alnx(n∈Z,a>0).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)若n=2016,且函数y=2ax-f(x)有唯一零点x0,求x0与a.

分析 (Ⅰ)分类讨论,确定函数的单调性,即可求函数f(x)的极值;
(Ⅱ)若函数y=2ax-f(x)有唯一零点,即g(x)=-x2+2ax+2alnx=0有唯一解,利用g′(x0)=0,g(x0)=0,即可求x0与a.

解答 解:(Ⅰ)f(x)=x2-(-1)n2alnx的定义域为(0,+∞),f′(x)=2x-$\frac{(-1)^{n}•2a}{x}$.
n为奇数,f′(x)=2x+$\frac{2a}{x}$>0,函数在(0,+∞)上单调递增,无极值;
n为偶数,f′(x)=2x-$\frac{2a}{x}$=0,x∈(0,$\sqrt{a}$),f′(x)<0,x∈($\sqrt{a}$,+∞),f′(x)>0,
∴函数f(x)无极大值,有极小值f($\sqrt{a}$)=a-alna;
(Ⅱ)n=2016,若函数y=2ax-f(x)有唯一零点,即g(x)=-x2+2ax+2alnx=0有唯一解.
令g′(x)=0,得x2-ax-a=0,
∵a>0,x>0,
∴x0=$\frac{a+\sqrt{{a}^{2}+4a}}{2}$,
当x∈(0,x0)时,g′(x)<0,g(x)在(0,x0)上是单调递减函数;
当x∈(x0,+∞)时,g′(x)>0,g(x)在(x0,+∞)上是单调递增函数.
∴当x=x0时,g′(x0)=0,g(x)min=g(x0),
∵g(x)=0有唯一解,∴g(x0)=0.
即x02-ax0-a=0,-x02+2ax0+2alnx0=0
∴两式相加得2alnx0+ax0-a=0,
∵a>0,∴2lnx0+x0-1=0①,
设函数h(x)=2lnx+x-1,
∵在x>0时h(x)是增函数,∴h(x)=0至多有一解.
∵h(1)=0,∴方程①的解为x0=1,即$\frac{a+\sqrt{{a}^{2}+4a}}{2}$=1,解得a=$\frac{1}{2}$.

点评 本题考查利用导数研究函数的单调性,极值,考查函数的零点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.无穷等比数列{an}的公比为$\frac{1}{3}$,各项和为3,则数列{an}的首项为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)对一切实数x,y都有f(x+y)-f(y)=f(x)成立,且f(1)=0.
(1)求f(x)的解析式;
(2)已知f(x)=(a+2)x-3在$(\frac{1}{2},2)$内有解,求实数a的取值集合(记为集合A);
(3)在(2)中的A中存在实数a使y=f(x)的图象与y=x+b的图象恒有两不同的交点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,圆O的直径AB=10,C为圆上一点,BC=6.过C作圆O的切线l,AD⊥l于点D,且交圆O于点E,求DE长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥面ABCD,∠ABC=90°,△ABC≌△ADC,PA=AC=2AB=2,E是线段PC的中点.
(I)求证:DE∥面PAB;
(Ⅱ)求二面角D-CP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+ax2-(2a+1)x,其中$a<\frac{1}{2}$.
(Ⅰ)当a=-2时,求函数f(x)的极大值;
(Ⅱ)若f(x)在区间(0,e)上仅有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)>f′(x),且f(0)=3,则不等式f(x)>3ex的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于N,过N作圆O的切线交BC于D,OD交圆O于点M.
(Ⅰ)证明:OD∥AC;
(Ⅱ)证明:$\frac{4DM}{CN}=\frac{DM}{DM+AB}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.随着电子商务的发展,人们的购物习惯正在改变,基本上所有的需求都可以通过网络购物解决.小韩是位网购达人,每次购买商品成功后都会对电商的商品和服务进行评价.现对其近年的200次成功交易进行评价统计,统计结果如表所示.
对服务好评对服务不满意合计
对商品好评8040120
对商品不满意701080
合计15050200
(1)是否有99.9%的把握认为商品好评与服务好评有关?请说明理由;
(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行观察,求只有一次好评的概率.
 P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案