精英家教网 > 高中数学 > 题目详情
双曲线=1的渐近线上一点A到双曲线的右焦点F的距离等于2,抛物线y2=2px(p>0)通过点A,则该抛物线的方程为(    )

A.y2=9x                                B.y2=4x

C.y2=x                       D.y2=x

C

解析:∵双曲线=1的渐近线方程为y=x,F点坐标为(,0),

∴设A点横坐标为x则y=x,由|AF|=2x=

y=,代入y2=2px得p=,所以,y2=x,

所以选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•荆门模拟)如图,已知直线OP1,OP2为双曲线E:
x2
a2
-
y2
b2
=1
的渐近线,△P1OP2的面积为
27
4
,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为
13
2

(1)若P1、P2点的横坐标分别为x1、x2,则x1、x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点M,两焦点F1、F2,若∠F1MF2为钝角,求M点横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海模拟)设C1是以F为焦点的抛物线y2=2px(p>0),C2是以直线2x-
3
y=0
2x+
3
y=0
为渐近线,以(0,  
7
)
为一个焦点的双曲线.
(1)求双曲线C2的标准方程;
(2)若C1与C2在第一象限内有两个公共点A和B,求p的取值范围,并求
FA
FB
的最大值;
(3)是否存在正数p,使得此时△FAB的重心G恰好在双曲线C2的渐近线上?如果存在,求出p的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丹东模拟)抛物线y2=2px(p>0)上横坐标是5的点P到其焦点F的距离是8,则以F为圆心,且与双曲线
x2
6
-
y2
3
=1
的渐近线相切的圆的方程是(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市七校高三(下)联考数学试卷(文科)(解析版) 题型:解答题

设C1是以F为焦点的抛物线y2=2px(p>0),C2是以直线为渐近线,以为一个焦点的双曲线.
(1)求双曲线C2的标准方程;
(2)若C1与C2在第一象限内有两个公共点A和B,求p的取值范围,并求的最大值;
(3)是否存在正数p,使得此时△FAB的重心G恰好在双曲线C2的渐近线上?如果存在,求出p的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案