精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,求处的切线方程;

(2)若在区间上恰有两个零点,求的取值范围.

【答案】(1);(2).

【解析】试题分析:(1)求出利用导数的几何意义求切线斜率为,根据点斜式可得切线方程;(2)利用导数求出函数的极大值和极小值利用在区间上恰有两个零点列不等式组,求解不等式组即可求的取值范围.

试题解析:(1)由已知得,

时,有 ,

∴在处的切线方程为: ,化简得.

(2)由(1)知

因为,令,得

所以当时,有,则是函数的单调递减区间;、

时,有,则是函数的单调递增区间. 9分

在区间上恰有两个零点,只需,即,

所以当时, 在区间上恰有两个零点.

【方法点晴】本题主要考查利用导数求曲线切线以及利用导数研究函数零点问题,属于难题.求曲线切线方程的一般步骤是:(1)求出处的导数,即在点 出的切线斜率(当曲线处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ +c是奇函数,且满足f(1)= ,f(2)=
(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0, )上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当 时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,再把所得图象向右平移 个单位,得到函数y=g(x),求方程g(x)=2在区间 上的所有根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各函数在其定义域中,既是奇函数,又是增函数的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin2x的图象向左平移 个单位长度,所得函数是(
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)判断并用定义证明函数的奇偶性;
(2)判断并用定义证明函数在(﹣∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为F1、F2 , 短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.

(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明: 为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时取到极值,求的值及的图象在处的切线方程;

(2)若时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离等于坐标原点O到直线l:x﹣2y+m=0的距离的一半.
(1)求m的值;
(2)判断直线l与圆 的位置关系.

查看答案和解析>>

同步练习册答案