【题目】已知函数.
(1)若,求在处的切线方程;
(2)若在区间上恰有两个零点,求的取值范围.
【答案】(1);(2).
【解析】试题分析:(1)求出,利用导数的几何意义求切线斜率为,根据点斜式可得切线方程;(2)利用导数求出函数的极大值和极小值,利用在区间上恰有两个零点列不等式组,求解不等式组即可求的取值范围.
试题解析:(1)由已知得,
若时,有, ,
∴在处的切线方程为: ,化简得.
(2)由(1)知,
因为且,令,得
所以当时,有,则是函数的单调递减区间;、
当时,有,则是函数的单调递增区间. 9分
若在区间上恰有两个零点,只需,即,
所以当时, 在区间上恰有两个零点.
【方法点晴】本题主要考查利用导数求曲线切线以及利用导数研究函数零点问题,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点 出的切线斜率(当曲线在处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+ +c是奇函数,且满足f(1)= ,f(2)= .
(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0, )上的单调性并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当 时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,再把所得图象向右平移 个单位,得到函数y=g(x),求方程g(x)=2在区间 上的所有根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为F1、F2 , 短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明: 为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两平行直线4x﹣2y+7=0,2x﹣y+1=0之间的距离等于坐标原点O到直线l:x﹣2y+m=0的距离的一半.
(1)求m的值;
(2)判断直线l与圆 的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com