分析 先根据公式x=ρ•cosθ,y=ρ•sinθ,求出点的直角坐标,根据题意得出直线的斜率为0,用点斜式表示出方程,再化为极坐标方程.
解答 解:由x=ρ•cosθ=$\sqrt{2}•cos\frac{π}{4}$=1,y=ρ•sinθ=$\sqrt{2}•sin\frac{π}{4}$=1,
可得点($\sqrt{2}$,$\frac{π}{4}$)的直角坐标为(1,1),
∵直线与极轴平行,
∴在直角坐标系下直线的斜率为0.
∴直线直角坐标方程为y=1,
∴直线的极坐标方程是ρ•sinθ=1.
故答案为:ρ•sinθ=1.
点评 本题考查了简单曲线的极坐标方程,考查了基本公式x=ρ•cosθ,y=ρ•sinθ,注意转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{4\sqrt{3}}{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com