精英家教网 > 高中数学 > 题目详情
13.已知:$0<α<\frac{π}{2}<β<π,cos(β-\frac{π}{4})=\frac{1}{3}$,$sin(α+β)=\frac{4}{5}$.
(1)求sin2β的值;
(2)设函数f(x)=cosx-sinx,试求 f(α)的值.

分析 (1)【解法一】利用二倍角与同角的三角函数关系求出cos(2β-$\frac{π}{2}$),即sin2β的值;
【解法二】利用两角差的余弦公式得出$cosβ+sinβ=\frac{{\sqrt{2}}}{3}$,再两边平方求出sin2β的值;
(2)根据α、β的取值范围,利用同角的三角函数关系和三角恒等变换,求f(α)的值即可.

解答 解:(1)【解法一】∵cos(β-$\frac{π}{4}$)=$\frac{1}{3}$,
∴cos(2β-$\frac{π}{2}$)=2cos2(β-$\frac{π}{4}$)-1=2×$\frac{1}{9}$-1=-$\frac{7}{9}$,----(3分)
即sin2β=-$\frac{7}{9}$;-------(6分)
【解法二】∵cos(β-$\frac{π}{4}$)=$\frac{1}{3}$,
∴$\frac{{\sqrt{2}}}{2}•(cosβ+sinβ)=\frac{1}{3}$,
即$cosβ+sinβ=\frac{{\sqrt{2}}}{3}$;------(3分)
两边平方得:$1+sin2β=\frac{2}{9}$,
即sin2β=-$\frac{7}{9}$;------(6分)
(2)∵0<α<$\frac{π}{2}$<β<π,
∴$\frac{π}{4}$<β-$\frac{π}{4}$<$\frac{3π}{4}$,$\frac{π}{2}$<α+β<$\frac{3π}{2}$,
∴sin(β-$\frac{π}{4}$)>0,cos(α+β)<0,
∴sin(β-$\frac{π}{4}$)=$\frac{2\sqrt{2}}{3}$,----------(8分)
cos(α+β)=-$\frac{3}{5}$;-----------(10分)
∴f(α)=cosα-sinα
=$\sqrt{2}$cos(α+$\frac{π}{4}$)
=$\sqrt{2}$cos[(α+β)-(β-$\frac{π}{4}$)]
=$\sqrt{2}$[cos(α+β)cos(β-$\frac{π}{4}$)+sin(α+β)sin(β-$\frac{π}{4}$)]
=$\sqrt{2}$(-$\frac{3}{5}$×$\frac{1}{3}$+$\frac{4}{5}$×$\frac{2\sqrt{2}}{3}$)
=$\frac{16-3\sqrt{2}}{15}$.--------(12分)

点评 本题考查了三角函数的求值问题,也考查了三角恒等变换应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知数列{an}满足an=an-1+an-2(n>2,n∈N*),且a2015=1,a2017=-1,设{an}的前n项和为Sn,则S2020-S2016=(  )
A.-17B.-15C.-6D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C经过A(1,3),B(-1,1)两点,且圆心在直线y=2x-1上.
(1)求圆C的标准方程;
(2)设直线l经过点(2,2),且l与圆C相交所得弦长为$2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.等差数列{an}的前n项和为Sn,且$\frac{{S}_{6}}{{S}_{3}}$=4,则$\frac{{S}_{5}}{{S}_{6}}$=(  )
A.$\frac{9}{4}$B.$\frac{2}{3}$C.$\frac{25}{36}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(理科)设A在平面BCD内的射影是直角三角形BCD的斜边BD的中点O,AC=BC=1,CD=$\sqrt{2}$,
求(1)AC与平面BCD所成角的大小;
(2)二面角A-BC-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若角α的终边与角$\frac{π}{6}$的终边关于直线y=x对称,且α∈(-4π,-2π),则α=-$\frac{11π}{3}$,-$\frac{5π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinα-cosα=$\frac{1}{5}$,则sin2α=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C所对应的边长分别为a,b,c,面积为S,若S+a2=(b+c)2,则tanA=(  )
A.$\frac{8}{15}$B.-$\frac{8}{15}$C.$\frac{15}{17}$D.-$\frac{15}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.由表格中的数据可以判定函数f(x)=lnx-x+2的一个零点所在的区间是(k,k+1)(k∈Z),则k的值为(  )
x12345
lnx00.691.101.391.61
x-2-10123
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案