精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.
(1)求椭圆C的方程;(2)求的取值范围;
(1);(2) 的取值范围是.

试题分析:(1)先由离心率得出的关系,再由原点到直线的距离等于解得,故,椭圆方程为;(2)联立直线和椭圆的方程,因为直线和椭圆有两个交点可求得的范围,再设出交点,计算,由得范围求得
试题解析:(Ⅰ)由题意知,∴,即
,∴ 故椭圆的方程为    4分
(Ⅱ)解:由得:          6分

,则     8分
  10分
,  ∴
的取值范围是.                   13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,点分别是椭圆C:的左、右焦点,过点轴的垂线,交椭圆的上半部分于点,过点的垂线交直线于点.

(1)如果点的坐标为(4,4),求椭圆的方程;
(2)试判断直线与椭圆的公共点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为椭圆的左,右焦点,为椭圆上的动点,且的最大值为1,最小值为-2.
(I)求椭圆的方程;
(II)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点。试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆的左、右顶点,点在椭圆上,且直线与直线的斜率之积为
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,已知是椭圆上不同于顶点的两点,直线交于点,直线交于点.① 求证:;② 若弦过椭圆的右焦点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为.
(1) 求椭圆的方程;
(2) 若是椭圆上不重合的四个点,满足向量共线,
线,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知过椭圆的左顶点作直线轴于点,交椭圆于点,若是等腰三角形,且,则椭圆的离心率为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆具有 (   )
A.相同的长轴长B.相同的焦点
C.相同的离心率D.相同的顶点

查看答案和解析>>

同步练习册答案