精英家教网 > 高中数学 > 题目详情

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

【答案】11004分(2)分布列见解析, 3819

【解析】

1)利用频率分布直方图和平均数的计算公式,即可求得这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值;

2)结合频率分布直方图和分层抽样的方法求得随机变量的可能取值,求出相应的概率,得到的分布列,利用期望的公式,求得其数学期望;

3)由(1)可得,得到,得到概率,即可求解在9:46~10:40这一时间段内通过的车辆数.

1)由题意,这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值为

,即1004.

2)结合频率分布直方图和分层抽样的方法可知:抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在这一区间内的车辆数,即,所以X的可能取值为01231.

所以

所以X的分布列为

X

0

1

2

3

4

P

所以.

3)由(1)可得

所以.

估计在9:46~10:40这一时间段内通过的车辆数,也就是通过的车辆数,

所以,估计在9:46~10:40这一时间段内通过的车辆数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在边长为2的菱形中,,将菱形沿对角线折起,使得平面平面,则所得三棱锥的外接球表面积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为1的正方体内部有一圆柱,此圆柱恰好以直线为轴.有下列命题:

①圆柱的母线与正方体所有的棱所成的角都相等;

②正方体所有的面与圆柱的底面所成的角都相等;

③在正方体内作与圆柱底面平行的截面,则截面的面积

④圆柱侧面积的最大值为.

其中正确的命题是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把方程表示的曲线作为函数的图象,则下列结论正确的是(

R上单调递减

的图像关于原点对称

的图象上的点到坐标原点的距离的最小值为3

④函数不存在零点

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知某市穿城公路自西向东到达市中心后转向东北方向,,现准备修建一条直线型高架公路,在上设一出入口,在上设一出入口,且要求市中心所在的直线距离为.

1)求两出入口间距离的最小值;

2)在公路段上距离市中心处有一古建筑(视为一点),现设立一个以为圆心,为半径的圆形保护区,问如何在古建筑和市中心之间设计出入口,才能使高架公路及其延长线不经过保护区?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通安全法有规定:机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过马路,应当避让.我们将符合这条规定的称为“礼让斑马线”,不符合这条规定的称为“不礼让斑马线”.下表是六安市某十字路口监控设备所抓拍的5个月内驾驶员“不礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

“不礼让斑马线”的驾驶员人数

120

105

100

85

90

1)根据表中所给的5个月的数据,可用线性回归模型拟合的关系,请用相关系数加以说明;

2)求“不礼让斑马线”的驾驶员人数关于月份之间的线性回归方程;

3)若从45月份“不礼让斑马线”的驾驶员中分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的2人分别来自两个月份的概率;

参考公式:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,,点E上,且,将三角形沿线段折起到的位置,(如图2.

1)求证:平面平面

2)在线段上是否存在点M,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=axexgx)=x2+2x+b,若曲线yfx)与曲线ygx)都过点P1c).且在点P处有相同的切线l

(Ⅰ)求切线l的方程;

(Ⅱ)若关于x的不等式k[efx]≥gx)对任意x[1+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某市年全社会固定资产投资以及增长率如图所示,则下列说法错误的是(

A.2013年到2019年全社会固定资产的投资处于不断增长的状态

B.2013年到2019年全社会固定资产投资的平均值为亿元

C.该市全社会固定资产投资增长率最高的年份为2014

D.2016年到2017年全社会固定资产的增长率为0

查看答案和解析>>

同步练习册答案