【题目】平面直角坐标系xOy中,椭圆C:+=1 (a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.
【答案】(1);(2)①证明见解析;②的最大值为,此时点P的坐标为.
【解析】试题分析:(1)利用离心率、抛物线的焦点进行求解;(2)①设出点的坐标和直线的方程,联立直线和椭圆的方程,得到关于的一元二次方程,利用根与系数的关系进行求解;②利用点到直线的距离公式、弦长公式和函数的性质进行求解.
试题解析:(1)由题意知=,
可得a2=4b2,因为抛物线E的焦点为F,所以b=,a=1,
所以椭圆C的方程为x2+4y2=1.
(2)①证明 设P (m>0),由x2=2y,可得y′=x,所以直线l的斜率为m,因此直线l的方程为y-=m(x-m),
即y=mx-.
设A(x1,y1),B(x2,y2),D(x0,y0).
联立方程
得(4m2+1)x2-4m3x+m4-1=0.
由Δ>0,得0<m< (或0<m2<2+).(*)
且x1+x2=,因此x0=,将其代入y=mx-,
得y0=,因为=-.
所以直线OD的方程为y=-x,
联立方程
得点M的纵坐标yM=-,
所以点M在定直线y=-上.
②由①知直线l的方程为y=mx-,令x=0,得y=-,
所以G,
又P,F,D,
所以S1=·|GF|·m=,
S2=·|PM|·|m-x0|=××=,
所以=.
设t=2m2+1,则=
==-++2,
当=,即t=2时,取到最大值,
此时m=,满足(*)式,所以P点坐标为.
因此的最大值为,此时点P的坐标为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ex- (x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )
A. (-∞,) B. (-∞,)
C. (-, ) D. (-, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则下列结论正确的是( )
A. 导函数为
B. 函数f(x)的图象关于直线对称
C. 函数f(x)在区间上是增函数
D. 函数f(x)的图象可由函数y=3cos 2x的图象向右平移个单位长度得到
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左、右焦点,点在椭圆上,且离心率为
(1)求椭圆的方程;
(2)若的角平分线所在的直线与椭圆的另一个交点为为椭圆上的一点,当面积最大时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过圆上的点作圆的切线,过点作切线的垂线,若直线过抛物线的焦点.
(1)求直线与抛物线的方程;
(2)若直线与抛物线交于点,点在抛物线的准线上,且,求的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com