【题目】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.
(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;
(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.(用数字作答)
【答案】(1)种.(2) 种.(3) 种.(4) 种.
【解析】
(1)根据题意,将7人全排列即可,由排列数公式计算可得答案;
(2)根据题意,分2步进行分析:先分析甲,再将其余6人全排列,分别求出每一步的情况数目,由分步计数原理计算可得答案;
(3)根据题意,用插空法分2步进行分析:先将女生看成一个整体,考虑女生之间的顺序,再将女生的整体与3名男生在一起进行全排列,分别求出每一步的情况数目,由分步计数原理计算可得答案;
(4)根据题意,用插空法分析:先将4名女生全排列,再在女生之间及首尾空出的5个空位中任选3个空位排男生,分别求出每一步的情况数目,由分步计数原理计算可得答案.
(1)种.(2) 种.(3) 种.(4) 种.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx﹣ ax2﹣bx
(1)当a=b= 时,求函数f(x)的单调区间;
(2)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点M(3,2)到拋物线C:y=ax2(a>0)准线的距离为4,F为拋物线的焦点,点N(l,l),当点P在直线l:x﹣y=2上运动时, 的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】党的十九大报告指出,建设生态文明是中华民族永续发展的千年大计.而清洁能源的广泛使用将为生态文明建设提供更有力的支撑.沼气作为取之不尽、用之不竭的生物清洁能源,在保护绿水青山方面具有独特功效.通过办沼气带来的农村“厕所革命”,对改善农村人居环境等方面,起到立竿见影的效果.为了积极响应国家推行的“厕所革命”,某农户准备建造一个深为2米,容积为32立方米的长方体沼气池,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,沼气池盖子的造价为3000元,问怎样设计沼气池能使总造价最低?最低总造价是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为提高员工的综合素质,聘请专业机构对员工进行专业技术培训,其中培训机构费用成本为12000元.公司每位员工的培训费用按以下方式与该机构结算:若公司参加培训的员工人数不超过30人时,每人的培训费用为850元;若公司参加培训的员工人数多于30人,则给予优惠:每多一人,培训费减少10元.已知该公司最多有60位员工可参加培训,设参加培训的员工人数为人,每位员工的培训费为元,培训机构的利润为元.
(1)写出与 之间的函数关系式;
(2)当公司参加培训的员工为多少人时,培训机构可获得最大利润?并求最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的短轴长为2,过上顶点E和右焦点F的直线与圆M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l过点(1,0),且与椭圆C交于点A,B,则在x轴上是否存在一点T(t,0)(t≠0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB (其中O为坐标原点),若存在,求出 t的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }为等比数列,并求{an}的通项公式an;
(2)数列{bn}满足bn=(3n﹣1) an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若数列{an}满足a1=f(0),且f(an+1)=,则a2 017的值为( )
A. 4 033 B. 3 029 C. 2 249 D. 2 209
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com