精英家教网 > 高中数学 > 题目详情
20.函数f(x)=xlnx-$\frac{k}{x}$(k<0)的图象与x轴交于不同的两点A(x1,0),B(x2,0).求证:f′($\frac{{x}_{1}+{x}_{2}}{2}$)≠0.

分析 求出f(x)的导数,由题意可得方程k=x2lnx在x>0上有两解,令g(x)=x2lnx,求出导数,求得单调区间可得极值和最值,确定k的范围,再由x1,x2的范围,运用不等式的性质,可得f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0,进而得证.

解答 证明:f(x)=xlnx-$\frac{k}{x}$(k<0),
∴f′(x)=1+lnx+$\frac{k}{{x}^{2}}$,
∵函数f(x)的图象与x轴交于两点A(x1,0),B(x2,0),
∴x1lnx1-$\frac{k}{{x}_{1}}$=0,x2lnx2-$\frac{k}{{x}_{2}}$=0,
即有方程k=x2lnx在x>0上有两解,
令g(x)=x2lnx,g′(x)=2xlnx+x,由g′(x)=0,解得x=$\frac{1}{\sqrt{e}}$,
当x>$\frac{1}{\sqrt{e}}$时,g′(x)>0,g(x)递增;
当0<x<$\frac{1}{\sqrt{e}}$时,g′(x)<0,g(x)递减.
即有x=$\frac{1}{\sqrt{e}}$处取得最小值,且为-$\frac{1}{2e}$,
即有-$\frac{1}{2e}$<k<0,
可设0<x1<$\frac{1}{\sqrt{e}}$,$\frac{1}{\sqrt{e}}$<x2<1,
即有$\frac{1}{2\sqrt{e}}$<$\frac{{x}_{1}+{x}_{2}}{2}$<$\frac{1}{2}$+$\frac{1}{2\sqrt{e}}$,
令x0=$\frac{{x}_{1}+{x}_{2}}{2}$,即有f′($\frac{{x}_{1}+{x}_{2}}{2}$)=f′(x0)=1+lnx0+$\frac{k}{{{x}_{0}}^{2}}$,
由$\frac{1}{2\sqrt{e}}$<x0<$\frac{1}{2}$+$\frac{1}{2\sqrt{e}}$,可得ln$\frac{1}{2\sqrt{e}}$<lnx0<ln($\frac{1}{2}$+$\frac{1}{2\sqrt{e}}$),
即有lnx0∈(-1.5,-1),$\frac{k}{{{x}_{0}}^{2}}$<0,
则有f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0,
故f′($\frac{{x}_{1}+{x}_{2}}{2}$)≠0.

点评 本题主要考查利用导数研究函数的单调性,极值和最值,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在数列{an}中,已知${a_{n+1}}={a_n}+\frac{n}{2}$,且a1=2,则a99的值为(  )
A.2477B.2427C.2427.5D.2477.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\frac{1}{{\sqrt{1-{2^x}}}}$的定义域是(  )
A.{x|x≥0}B.{x|x≤0}C.{x|x>0}D.{x|x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$f(x)=lgx-\frac{9}{x}$的零点大致所在区间是(  )
A.(6,7)B.(7,8)C.(8,9)D.(9,10)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.幂函数f(x)的图象经过点($\sqrt{2}$,2),点(-2,$\frac{1}{4}$)在幂函数g(x)的图象上,
(1)求f(x),g(x)的解析式.
(2)x为何值时f(x)>g(x)?x为何值时f(x)<g(x)?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.在正三棱锥中,斜高大于侧棱
B.有一条侧棱垂直于底面的棱柱是直棱柱
C.底面是正方形的棱锥是正四棱锥
D.有一个面是多边形,其余各面均为三角形的几何体是棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AD,AB的中点.
(1)求证:EF∥平面CB1D1
(2)求证:B1D1⊥平面CAA1C1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有一长为1km的斜坡,它的坡角为20°,现不改变坡的高度,填土将坡角改为10°,则斜坡变为(  )
A.2cos10°B.2sin10°C.cos20°D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=x-lnx.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)请画出函数f(x)的大致图象,并指出其单调区间和最值;
(3)求函数f(x)的区间[a,a+1](a>0)上的最小值.

查看答案和解析>>

同步练习册答案