【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1 , ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.请建立适当的坐标系,求解下列问题: (Ⅰ)求证:异面直线A1D与BC互相垂直;
(Ⅱ)求二面角(钝角)D﹣A1C﹣A的余弦值.
【答案】解:因为侧面ABB1A1C1 , ACC1A1均为正方形,∠BAC=90°, 所以AB,AC,AA1两两互相垂直,如图所示建立直角坐标系A﹣xyz
设AB=1,则C(0,1,0),B(1,0,0),A1(0,0,1),D( , ,1).
(Ⅰ)证明:由上可知: ,
所以 ,
所以 ,
所以,异面直线A1D与BC互相垂直.
(Ⅱ)解: =( , ,0), =(0,1,﹣1),
设平面DA1C的法向量为 =(x,y,z),则有
, ,
取x=1,得 =(1,﹣1,﹣1)
又因为AB⊥平面ACC1A1 , 所以平面ACC1A1的法向量为 =(1,0,0),
∴cos = = = ,
因为二面角D﹣A1C﹣A是钝角,
所以,二面角D﹣A1C﹣A的余弦值为- .
【解析】(Ⅰ)AB,AC,AA1两两互相垂直,建立直角坐标系A﹣xyz,设AB=1,求出相关点的坐标,通过证明 =0,即可证明异面直线A1D与BC互相垂直.(Ⅱ)求出平面DA1C的法向量,平面ACC1A1的法向量利用空间向量的数量积求解即可.
【考点精析】通过灵活运用异面直线及其所成的角,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系即可以解答此题.
科目:高中数学 来源: 题型:
【题目】A城市的出租车计价方式为:若行程不超过3千米,则按“起步价”10元计价;若行程超过3千米,则之后2千米以内的行程按“里程价”计价,单价为1.5元/千米;若行程超过5千米,则之后的行程按“返程价”计价,单价为2.5元/千米.设某人的出行行程为x千米,现有两种乘车方案:①乘坐一辆出租车;②每5千米换乘一辆出租车.
(Ⅰ)分别写出两种乘车方案计价的函数关系式;
(Ⅱ)对不同的出行行程,①②两种方案中哪种方案的价格较低?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程mx2﹣2x+1=0有实数解”.若“p∨q”为真,“¬q”为假,则实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线C于A,B两点,若点P的纵坐标为m(m≠0),点D为准线l与x轴的交点. (Ⅰ)求直线PF的方程;
(Ⅱ)求△DAB的面积S范围;
(Ⅲ)设 , ,求证λ+μ为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的左焦点为F(﹣2,0),离心率为 . (Ⅰ)求椭圆C的标准方程;
(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆 过点 ,离心率为 ,左、右焦点分别为F1 , F2 , 过F1的直线交椭圆于A,B两点. (Ⅰ)求椭圆C的方程;
(Ⅱ)当△F2AB的面积为 时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列 的公比 ,且 , .
(Ⅰ)求数列 的通项公式;
(Ⅱ)设 , 是数列 的前 项和,对任意正整数 ,不等式 恒成立,求实数 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若方程|x2﹣2x﹣1|﹣t=0有四个不同的实数根x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则2(x4﹣x1)+(x3﹣x2)的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com