精英家教网 > 高中数学 > 题目详情
13.设方程2x+x+2=0和方程log2x+x+2=0的根分别为p和q,函数f (x)=(x+p)(x+q)+2,则f (2),f (0),f (3)的大小关系为f(3)>f(2)=f(0).

分析 把两个方程分别看作指数函数与直线y=-x-2的交点B和对数函数与直线y=-x-2的交点A的横坐标分别为p和q,而指数函数与对数函数互为反函数则关于y=x对称,求出AB的中点坐标得到p+q=-2;然后把函数f(x)化简后得到一个二次函数,对称轴为直线x=-$\frac{p+q}{2}$=1,所以得到f(2)=f(0)且根据二次函数的增减性得到f(2)和f(0)都小于f(3)得到答案.

解答 解:如图所示:

方程2x+x+2=0和方程log2x+x+2=0可以分别看作方程方程2x=-x-2和方程log2x=-x-2,
方程2x+x+2=0和方程log2x+x+2=0的根分别为p和q,
即分别为函数y=2x与函数y=-x-2的交点B横坐标为p;y=log2x与y=-x-2的交点C横坐标为q.
由y=2x与y=log2x互为反函数且关于y=x对称,所以BC的中点A一定在直线y=x上,
联立得 $\left\{\begin{array}{l}{y=x}\\{y=-x-2}\end{array}\right.$,解得A点坐标为(-1,-1),
根据中点坐标公式得到 $\frac{p+q}{2}$=-1即p+q=-2,
则f(x)=(x+p)(x+q)+2=x2+(p+q)x+pq+2为开口向上的抛物线,
且对称轴为x=-$\frac{p+q}{2}$=1,
得到f(0)=f(2)且当x>1时,函数为增函数,所以f(3)>f(2),
综上,f(3)>f(2)=f(0)
故答案为:f(3)>f(2)=f(0).

点评 此题是一道综合题,考查学生灵活运用指数函数、对数函数的图象与性质,要求学生掌握反函数的性质,会利用二次函数的图象与性质解决实际问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.给出下列结论:
动点M(x,y)分别到两定点(-3,0)、(3,0)连线的斜率之乘积为$\frac{16}{9}$,设M(x,y)的轨迹为曲线C,F1、F2,分别为曲线C的左、右焦点,则下列说法中:
(1)曲线C的焦点坐标为F1(-5,0)、F2(5,0);
(2)当x<0时,△F1MF2的内切圆圆心在直线x=-3上;
(3)若∠F1MF2=90°,则${S_{△{F_1}M{F_2}}}$=32;
(4)设A(6,1),则|MA|+|MF2|的最小值为2$\sqrt{2}$;
其中正确的序号是:①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一线性规划问题的可行域为坐标平面上的正八边形ABCDEFGH及其内部(如图),已知目标函数z=3+ax+by(a,b∈R)的最大值只在顶点B处,如果目标函数变成z=3-bx-ay时,最大值只在顶点(  )
A.AB.BC.CD.D

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,点O为△ABC的重心,OA⊥OB,且AB=2,则$\overrightarrow{AC}$•$\overrightarrow{BC}$的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x>1},P={x|x<4},那么“x∈M∩P”是“x∈M或x∈P”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-2ax+a+2,a∈R.
(1)若方程f(x)=0有两个小于2的不等实根,求实数a的取值范围;
(2)若不等式f(x)≥-1-ax对任意x∈R恒成立,求实数a的取值范围;
(3)若函数f(x)在[0,2]上的最大值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,f(x)在区间[0,2]上满足f(x)=x(x-2).
(1)当k=-1时,求f(-1),f(2.5)的值;
(2)求f(x)在区间[-2,4]上的解析式;
(3)求f(x)在区间[-2,4]上的最大值,并求出相应的自变量的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的表面积是(  )
A.$1+\sqrt{5}$B.$2+\sqrt{5}$C.$1+2\sqrt{5}$D.$2+2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和记为Sn,点(n,Sn)在函数f(x)=x2-4x(x∈N*)的图象上.求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案